谐振器
零(语言学)
物理
铌酸锂
材料科学
光学
凝聚态物理
哲学
语言学
作者
F. Huang,Mingye Du,Chen Ma,Xi He,Feiya Suo,Jiawei Li,Tao Wu,Nan Wang
摘要
In this paper, a high-frequency lamb wave resonator (LWR) with near zero temperature coefficient of frequency (TCF) is designed, fabricated, and measured. The reported resonator is of a bi-layer structure consisting of lithium niobate (LiNbO3 or LN) and silicon dioxide (SiO2), and lithographically patterned aluminum (Al) inter-digitated electrode fingers on top of the bi-layer structure. By adjusting the thickness ratio of LN and SiO2 layers, both the electromechanical coupling (k2) and the TCF, including both TCF at resonant frequency (TCFr) and TCF at anti-resonant frequency (TCFa), of the thickness shear (TS) type LWR are optimized. Experimental results, which are in excellent agreement with theoretical analysis, show that the fabricated 11.6-GHz LWR achieves a k2 of 12.2%, with TCFr and TCFa being −4.2 and −5.4 ppm/K over a temperature range from 30 °C to 85 °C, respectively, demonstrating huge potential in applications for future wireless communication systems above 10 GHz.
科研通智能强力驱动
Strongly Powered by AbleSci AI