Central Nervous System Targeting Nanovesicles for Trans-Barrier Delivery and Spinal Cord Injury Treatment

作者
Jingkai Wang,Jiangjie Chen,Jinyang Chen,Kaishun Xia,Pengcheng Yuan,Xiaopeng Zhou,Ronghao Wang,Chao Yu,Yi Li,Kesi Shi,Yuang Zhang,Haibin Xu,Tengfei Zhao,Hao Li,Qixin Chen,Shiqing Feng,Chengzhen Liang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c08255
摘要

The central nervous system (CNS) barrier obstructs therapeutic component entrance and hinders the therapy efficiency of CNS diseases. An ideal delivery system should penetrate and concentrate in the CNS without safety concerns. Nanovesicles (NVs) are a popular delivery tool, because of their biological homology, inherent homing effects, and capacity to penetrate barriers. However, the delivery efficacy of NVs is insufficient for CNS disease therapy, and the mechanism for barrier penetration remains elusive. Herein, nanovesicles (NVs) were extruded from mesenchymal stem cells and modified by a lesion tissue affinity peptide (CAQK) for spinal cord injury (SCI) therapy. The NVs penetrated endothelial barriers effectively in vitro. Subsequently, the CNS barrier penetration capacity of the CAQK-conjugated NVs (CNVs) was verified in vivo in spinal cord injury (SCI) and the temporary middle cerebral artery occlusion (t-MCAO) mouse models. Furthermore, the endothelial barrier penetration of CNVs depended on the active endocytosis by endothelial cells. After endocytosis, the Rab11+ endosome was identified to mediate a transcellular transcytosis to transport CNVs across the barrier. In the SCI model, CNVs promoted the lesion tissue accumulation, leading to improvement in the neural functional recovery. In summary, we developed a natural NV tool for SCI therapy, employing the inherent CNS barrier penetration capacity and enhanced lesion tissue homing characteristics of NVs. The NVs crossed the CNS barriers via active endocytosis, followed by Rab11+ endosome-mediated transcytosis. The CNV exhibited good delivery efficacy and therapeutic effects in CNS diseases and has the potential for clinical translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
Yada发布了新的文献求助10
6秒前
KK_ad完成签到,获得积分10
6秒前
6秒前
回复对方完成签到,获得积分10
6秒前
怡然的芯完成签到,获得积分10
8秒前
斯文败类应助大气早晨采纳,获得10
9秒前
流沙完成签到,获得积分10
9秒前
9秒前
BOB完成签到 ,获得积分10
9秒前
10秒前
10秒前
张航天发布了新的文献求助10
13秒前
minkuuuuuuu应助青鱼采纳,获得10
13秒前
shhoing应助枖堇采纳,获得10
13秒前
13秒前
13秒前
14秒前
晴光完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
优秀口红发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
ysergling发布了新的文献求助10
18秒前
CipherSage应助hute采纳,获得10
18秒前
万能图书馆应助Yada采纳,获得10
18秒前
19秒前
斯文败类应助甜甜的忆彤采纳,获得10
19秒前
Akim应助ohh采纳,获得10
19秒前
清秀向雁发布了新的文献求助10
20秒前
木木完成签到 ,获得积分10
20秒前
20秒前
烟花应助瘦瘦冰凡采纳,获得10
20秒前
无限安蕾完成签到,获得积分10
21秒前
TigerOvO完成签到,获得积分10
21秒前
23秒前
noneo发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530824
求助须知:如何正确求助?哪些是违规求助? 4619829
关于积分的说明 14570171
捐赠科研通 4559332
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478292
关于科研通互助平台的介绍 1449845