李普希茨连续性
随机微分方程
数学
欧拉公式
收敛速度
趋同(经济学)
应用数学
数学分析
经济
计算机科学
计算机网络
经济增长
频道(广播)
作者
Huagui Liu,Fuke Wu,Minyu Wu
标识
DOI:10.3934/dcdss.2023029
摘要
By a semi-discrete tamed Euler approximation as a bridge, this paper examines the tamed Euler scheme for the Mckean-Vlasov stochastic differential equations (SDEs) and obtains the convergence rate under the one-sided Lipschitz condition for the drift coefficient. Under the local Lipschitz condition for the drift coefficient, the strong convergence of the tamed scheme is also examined. When the coefficients satisfy the Lipschitz condition, this paper also obtains the asymptotic error distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI