MATLAB语言
停留时间(流体动力学)
缩放比例
人工神经网络
可扩展性
机械工程
过程(计算)
放大
实验设计
工艺工程
工程类
高斯分布
计算机科学
人工智能
数学
物理
统计
量子力学
经典力学
数据库
几何学
操作系统
岩土工程
作者
Mario Radwan,Sulamith Frerich
标识
DOI:10.1002/ceat.202200523
摘要
Abstract This contribution aims at developing scaling algorithms for planetary roller extruders (PREs). Laboratory‐ and production‐scale experiments were carried out, using thermoplastic polymers according to a statistical design of experiments (DOE). By comparing plant size, spindle configuration, operating parameters, and material properties, their influence on pressure build‐up capacity, process temperatures, and residence time distribution is analyzed. All data generated are used to train MATLAB‐based machine learning models. First indications hint at Gaussian processes and artificial neural networks, predicting operating parameters with high accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI