生物塑料
废物管理
膜
水处理
纤维素
废水
环境科学
生化工程
工程类
化学
化学工程
生物化学
作者
Ria Sen Gupta,Paresh Kumar Samantaray,Suryasarathi Bose
出处
期刊:ACS omega
[American Chemical Society]
日期:2023-07-03
卷期号:8 (28): 24695-24717
被引量:11
标识
DOI:10.1021/acsomega.3c01699
摘要
Membrane technology is an efficient way to purify water, but it generates non-biodegradable biohazardous waste. This waste ends up in landfills, incinerators, or microplastics, threatening the environment. To address this, research is being conducted to develop compostable alternatives that are sustainable and ecofriendly. Bioplastics, which are expected to capture 40% of the market share by 2030, represent one such alternative. This review examines the feasibility of using synthetic biodegradable materials beyond cellulose and chitosan for water treatment, considering cost, carbon footprint, and stability in mechanical, thermal, and chemical environments. Although biodegradable membranes have the potential to close the recycling loop, challenges such as brittleness and water stability limit their use in membrane applications. The review suggests approaches to tackle these issues and highlights recent advances in the field of biodegradable membranes for water purification. The end-of-life perspective of these materials is also discussed, as their recyclability and compostability are critical factors in reducing the environmental impact of membrane technology. This review underscores the need to develop sustainable alternatives to conventional membrane materials and suggests that biodegradable membranes have great potential to address this challenge.
科研通智能强力驱动
Strongly Powered by AbleSci AI