Classifying electroencephalogram signals using an innovative and effective machine learning method based on chaotic elephant herding optimum

计算机科学 脑电图 人工智能 二元分类 模式识别(心理学) 混乱的 分类器(UML) 召回 放牧 灵敏度(控制系统) 机器学习 支持向量机 数据挖掘 医学 心理学 工程类 精神科 认知心理学 地理 林业 电子工程
作者
Ali Alqahtani,Nayef Alqahtani,Abdulaziz A. Alsulami,Stephen Ojo,Prashant Kumar Shukla,Shraddha V. Pandit,Piyush Kumar Pareek,Hany S. Khalifa
出处
期刊:Expert Systems [Wiley]
卷期号:42 (1) 被引量:31
标识
DOI:10.1111/exsy.13383
摘要

Abstract The field of electroencephalography (EEG) has made significant contributions to our understanding of the brain, our understanding of neurological diseases, and our ability to treat such diseases. Epileptic seizures, strokes, and even death can all be detected with the use of the electroencephalogram, a diagnostic technique used to record electrical activity in the brain. This research suggests using binary classification for automated epilepsy diagnosis. Patients' EEG signals are pre‐processed after being recorded. On the basis of the results of the feature extraction technique, the best traits are picked for further examination by means of a structured genetic algorithm. The EEG data are analysed and categorized as either seizure‐free or epileptic seizure‐related based on the assumption of feature optimization utilizing the support vector classifier. As a result, categorizing EEG signals is an ideal application for the suggested technique. For this purpose of accelerating the implementation of distributed computing, a CEHOC (Chaotic Elephant Herding Optimization based Classification) is used to classify the vast scope of various datasets. The results show that the CEHOC algorithm is more effective than previous versions. Precision, recall, F score, sensitivity, specificity, and accuracy are some of the metrics used to assess the effectiveness of the work provided here. The suggested work has a 99.3019% accuracy rate, a 98.2018% sensitivity rate, and a 99.1125% specificity rate. There was an F score of 99.3204%, a precision of 99.1019%, and a recall of 98.3015%. These numbers indicate that the planned action was successful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
普通人完成签到,获得积分10
1秒前
耍酷安蕾发布了新的文献求助10
1秒前
lalala应助TyrickS采纳,获得10
1秒前
yzq发布了新的文献求助10
2秒前
2秒前
脑洞疼应助kevin采纳,获得10
3秒前
瑜軒完成签到,获得积分10
3秒前
爆米花应助JJ_Coast采纳,获得10
3秒前
anonym11完成签到,获得积分10
4秒前
君君发布了新的文献求助10
4秒前
各个器官完成签到,获得积分10
5秒前
5秒前
黄登锋完成签到,获得积分10
5秒前
Piky发布了新的文献求助10
6秒前
喵喵完成签到 ,获得积分10
6秒前
Hobobi发布了新的文献求助10
7秒前
洋洋发布了新的文献求助10
7秒前
8秒前
8秒前
传统的银耳汤完成签到,获得积分10
8秒前
Owen应助平常的念柏采纳,获得10
8秒前
耍酷安蕾完成签到,获得积分10
9秒前
9秒前
9秒前
柚子发布了新的文献求助10
9秒前
9秒前
JJ_Coast完成签到,获得积分20
9秒前
苏蔚完成签到,获得积分10
10秒前
科研通AI5应助哈哈哈大赞采纳,获得10
10秒前
菠小萝完成签到,获得积分20
10秒前
wanci应助159采纳,获得10
10秒前
Ljx发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
LL发布了新的文献求助10
12秒前
今后应助颜十三采纳,获得10
12秒前
12秒前
充电宝应助annaanna采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258516
求助须知:如何正确求助?哪些是违规求助? 4420433
关于积分的说明 13760385
捐赠科研通 4294122
什么是DOI,文献DOI怎么找? 2356262
邀请新用户注册赠送积分活动 1352585
关于科研通互助平台的介绍 1313403