Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability

纳米结构 材料科学 纳米晶 纳米技术 化学
作者
Pu Chen,Daijie Deng,Henan Li,Xu Li
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:40 (2): 2304021-2304021 被引量:36
标识
DOI:10.3866/pku.whxb202304021
摘要

Abstract: Rechargeable zinc-air batteries (ZABs) have been extensively investigated owing to their high power density and environmental friendliness. However, the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes limit their practical application. Currently, IrO2 and RuO2 are considered the optimal OER electrocatalysts, and Pt/C is the most effective ORR electrocatalyst. However, the practical application of Pt, Ir, and Ru in ZABs is severely limited owing to their low natural abundance and high cost. Therefore, the fabrication of inexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transition-metal alloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they are considered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures can be fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst with Fe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) was designed for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-iron-layered double hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shell structure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitates charge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover, the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but also provided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectively protected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes. The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability of Fe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with a half-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA cm−2. Moreover, the catalyst exhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited a higher peak power density (214 mW·cm−2) than the ZABs based on Pt/C+IrO2 (155 mW·cm−2) and Fe0.64Ni0.36/NCNT (89 mW·cm−2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781 mAh·g−1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh·g−1, respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life > 1100 h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the design of novel catalysts for highly stable and efficient ZABs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小乐牙完成签到 ,获得积分10
3秒前
csy完成签到,获得积分10
4秒前
7秒前
8秒前
熊猫完成签到 ,获得积分10
8秒前
Mr.Ren完成签到,获得积分10
11秒前
14秒前
银鱼在游发布了新的文献求助10
14秒前
王的故郷完成签到 ,获得积分10
14秒前
Justtry完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
青黛完成签到 ,获得积分10
24秒前
晚塬完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
33秒前
淡淡的凡完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
43秒前
银鱼在游发布了新的文献求助10
43秒前
Owen应助武雨寒采纳,获得10
43秒前
风清扬应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得20
46秒前
风清扬应助科研通管家采纳,获得10
46秒前
chi完成签到 ,获得积分10
46秒前
wang应助科研通管家采纳,获得10
46秒前
风清扬应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
滕祥应助科研通管家采纳,获得10
46秒前
orixero应助科研通管家采纳,获得10
46秒前
风清扬应助科研通管家采纳,获得10
46秒前
46秒前
量子星尘发布了新的文献求助10
49秒前
武雨寒发布了新的文献求助10
55秒前
王kk完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
YDX完成签到 ,获得积分10
1分钟前
在水一方应助欣慰元蝶采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
三冬四夏完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706836
求助须知:如何正确求助?哪些是违规求助? 5179219
关于积分的说明 15247555
捐赠科研通 4860347
什么是DOI,文献DOI怎么找? 2608522
邀请新用户注册赠送积分活动 1559382
关于科研通互助平台的介绍 1517226