亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fe<sub>0.64</sub>Ni<sub>0.36</sub>@Fe<sub>3</sub>NiN Core-Shell Nanostructure Encapsulated in N-doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability

纳米结构 材料科学 纳米晶 纳米技术 化学
作者
Pu Chen,Daijie Deng,Henan Li,Xu Li
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2304021-2304021 被引量:12
标识
DOI:10.3866/pku.whxb202304021
摘要

Abstract: Rechargeable zinc-air batteries (ZABs) have been extensively investigated owing to their high power density and environmental friendliness. However, the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes limit their practical application. Currently, IrO2 and RuO2 are considered the optimal OER electrocatalysts, and Pt/C is the most effective ORR electrocatalyst. However, the practical application of Pt, Ir, and Ru in ZABs is severely limited owing to their low natural abundance and high cost. Therefore, the fabrication of inexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transition-metal alloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they are considered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures can be fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst with Fe0.64Ni0.36@Fe3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe0.64Ni0.36@Fe3NiN/NCNT) was designed for highly efficient rechargeable ZABs. Fe0.64Ni0.36@Fe3NiN/NCNT was synthesized by pyrolyzing the nickel-iron-layered double hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe0.64Ni0.36 alloy. The core-shell structure produced more ORR/OER active sites. The Fe0.64Ni0.36 core exhibited high electrical conductivity, which facilitates charge transfer. The Fe3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover, the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but also provided a large electrochemical active surface area. The high anticorrosion property of the Fe3NiN shell effectively protected the Fe0.64Ni0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes. The protective carbon layer and the superior chemical stability of the Fe3NiN shell resulted in the ultrahigh stability of Fe0.64Ni0.36@Fe3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with a half-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA cm−2. Moreover, the catalyst exhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited a higher peak power density (214 mW·cm−2) than the ZABs based on Pt/C+IrO2 (155 mW·cm−2) and Fe0.64Ni0.36/NCNT (89 mW·cm−2). Moreover, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB delivered a high capacity of 781 mAh·g−1, while the ZABs based on Fe0.64Ni0.36/NCNT and Pt/C+IrO2 reached capacities of 688 and 739 mAh·g−1, respectively. Furthermore, the Fe0.64Ni0.36@Fe3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life > 1100 h), which exceeded those of Pt/C (50 h) and Fe0.64Ni0.36/NCNT (450 h). We propose that this study will facilitate the design of novel catalysts for highly stable and efficient ZABs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
7秒前
丘比特应助谦让的西装采纳,获得10
18秒前
24秒前
29秒前
33秒前
赘婿应助谦让的西装采纳,获得10
35秒前
满意的伊完成签到,获得积分10
38秒前
49秒前
wannna发布了新的文献求助10
55秒前
wannna完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
John完成签到,获得积分10
3分钟前
MchemG应助John采纳,获得30
3分钟前
寒冷的如之完成签到 ,获得积分10
3分钟前
云朵完成签到 ,获得积分10
3分钟前
冬去春来完成签到 ,获得积分10
3分钟前
zz发布了新的文献求助10
3分钟前
沐熙发布了新的文献求助10
4分钟前
emchavezangel完成签到,获得积分10
4分钟前
SYLH应助emchavezangel采纳,获得10
4分钟前
香蕉觅云应助洒脱鲲采纳,获得10
4分钟前
Ocean完成签到,获得积分10
4分钟前
沐熙发布了新的文献求助10
5分钟前
高兴凝安完成签到 ,获得积分10
5分钟前
liuliu0801完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
沐熙完成签到,获得积分10
5分钟前
5分钟前
沐熙发布了新的文献求助10
5分钟前
5分钟前
北风完成签到,获得积分10
5分钟前
水的很厉害完成签到,获得积分10
6分钟前
月儿完成签到 ,获得积分10
6分钟前
阔达的非笑完成签到 ,获得积分10
6分钟前
小马甲应助Silence采纳,获得10
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833819
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492541
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842