Cross-modal Guiding Neural Network for Multimodal Emotion Recognition from EEG and Eye Movement Signals

计算机科学 脑电图 人工智能 语音识别 情态动词 眼球运动 人工神经网络 运动(音乐) 模式识别(心理学) 计算机视觉 神经科学 心理学 哲学 化学 高分子化学 美学
作者
Baole Fu,Wenhao Chu,Chunrui Gu,Yinhua Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5865-5876 被引量:2
标识
DOI:10.1109/jbhi.2024.3419043
摘要

Multimodal emotion recognition research is gaining attention because of the emerging trend of integrating information from different sensory modalities to improve performance. Electroencephalogram (EEG) signals are considered objective indicators of emotions and provide precise insights despite their complex data collection. In contrast, eye movement signals are more susceptible to environmental and individual differences but offer convenient data collection. Conventional emotion recognition methods typically use separate models for different modalities, potentially overlooking their inherent connections. This study introduces a cross-modal guiding neural network designed to fully leverage the strengths of both modalities. The network includes a dual-branch feature extraction module that simultaneously extracts features from EEG and eye movement signals. In addition, the network includes a feature guidance module that uses EEG features to direct eye movement feature extraction, reducing the impact of subjective factors. This study also introduces a feature reweighting module to explore emotion-related features within eye movement signals, thereby improving emotion classification accuracy. The empirical findings from both the SEED-IV dataset and our collected dataset substantiate the commendable performance of the model, thereby confirming its efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助炽岈采纳,获得10
刚刚
1秒前
Ava应助七七不八八采纳,获得10
1秒前
Ava应助niniyiya采纳,获得10
2秒前
NatureScience发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助30
4秒前
歪歪yyyyc发布了新的文献求助10
4秒前
5秒前
bkagyin应助可颂采纳,获得10
6秒前
7秒前
田様应助pgg采纳,获得10
7秒前
姚老表完成签到,获得积分10
7秒前
8秒前
甜甜圈发布了新的文献求助10
8秒前
9秒前
刘文发布了新的文献求助30
11秒前
Phoenix发布了新的文献求助30
11秒前
一叶知秋应助GL采纳,获得10
12秒前
润泽完成签到,获得积分10
12秒前
14秒前
深情不弱发布了新的文献求助10
15秒前
517完成签到 ,获得积分10
15秒前
17秒前
syzsyz发布了新的文献求助10
19秒前
丁丁12138完成签到,获得积分10
19秒前
CipherSage应助NatureScience采纳,获得10
20秒前
21秒前
21秒前
wlj完成签到 ,获得积分10
21秒前
22秒前
刘文完成签到,获得积分20
22秒前
22秒前
aaa发布了新的文献求助10
22秒前
张晓倩发布了新的文献求助10
23秒前
半颜发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
Li完成签到,获得积分20
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4254712
求助须知:如何正确求助?哪些是违规求助? 3787516
关于积分的说明 11887165
捐赠科研通 3437738
什么是DOI,文献DOI怎么找? 1886669
邀请新用户注册赠送积分活动 937832
科研通“疑难数据库(出版商)”最低求助积分说明 843497