亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a robust non-targeted analysis approach for fast identification of endocrine disruptors and their metabolites in human urine for exposure assessment

内分泌系统 鉴定(生物学) 尿 计算生物学 化学 色谱法 环境化学 生物 生物化学 激素 植物
作者
Anca Baesu,Yong-Lai Feng
出处
期刊:Chemosphere [Elsevier]
卷期号:363: 142754-142754 被引量:1
标识
DOI:10.1016/j.chemosphere.2024.142754
摘要

Endocrine disrupting chemicals are of concern because of possible human health effects, thus they are frequently included in biomonitoring studies. Current analytical methods are focused on known chemicals and are incapable of identifying or quantifying other unknown chemicals and their metabolites. Non-targeted analysis (NTA) methods are advantageous since they allow for broad chemical screening, which provides a more comprehensive characterization of human chemical exposure, and can allow elucidation of metabolic pathways for unknown chemicals. There are still many challenges associated with NTA, which can impact the results obtained. The chemical space, i.e., the group of known and possible compounds within the scope of the method, must clearly be defined based on the sample preparation, as this is critical in identifying chemicals with confidence. Data acquisition modes and mobile phase additives used with liquid chromatography coupled to high-resolution mass-spectrometry can affect the chemicals ionized and structural identification based on the spectral quality. In this study, a sample preparation method was developed using a novel clean-up approach with CarbonS cartridges, for endocrine-disrupting chemicals in urine, including new bisphenol A analogues and benzophenone-based UV filters, like methyl bis (4-hydroxyphenyl acetate). The study showed that data dependent acquisition (DDA) had a lower identification rate (40%) at low spiking levels, i.e., 1 ng/mL, compared to data independent acquisition (DIA) (57%), when Compound Discoverer was used. In DDA, more compounds were identified using Compound Discoverer, with an identification rate of 95% when ammonium acetate was compared to acetic acid (82%) as a mobile phase additive. TraceFinder software had an identification rate of 53% at 1 ng/mL spiking level using the DDA data, compared to 40% using the DIA data. Using the developed method, 2,4 bisphenol F was identified for the first time in urine samples. The results show how NTA can provide human exposure information for risk assessment and regulatory action but standardized reporting of procedures is needed to ensure study results are reproducible and accurate. His Majesty the King in Right of Canada, as represented by the Minister of Health, 2024.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
2秒前
Linos应助Emma采纳,获得10
6秒前
孤独小蜜蜂完成签到,获得积分20
6秒前
珍珠完成签到 ,获得积分10
8秒前
11秒前
元气小Liu发布了新的文献求助30
13秒前
李彬完成签到,获得积分10
16秒前
17秒前
嘚嘚完成签到,获得积分10
19秒前
PKL发布了新的文献求助10
22秒前
yzizz发布了新的文献求助10
25秒前
科研花完成签到 ,获得积分10
25秒前
29秒前
31秒前
小胖子完成签到 ,获得积分10
33秒前
JamesPei应助Moo5_zzZ采纳,获得30
34秒前
嘚嘚发布了新的文献求助10
34秒前
34秒前
任性凤凰发布了新的文献求助10
34秒前
萧雨墨完成签到,获得积分10
40秒前
等待黎明完成签到,获得积分10
49秒前
50秒前
炸骐完成签到,获得积分10
51秒前
51秒前
笑笑完成签到 ,获得积分10
51秒前
大脸兔狲完成签到,获得积分10
53秒前
酷波er应助任性凤凰采纳,获得10
1分钟前
以菱完成签到 ,获得积分10
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
PKL完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CipherSage应助Moo5_zzZ采纳,获得30
1分钟前
李健完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助凉凉采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364