Generation of Pedestrian Crossing Scenarios Using Ped-Cross Generative Adversarial Network

行人 计算机科学 生成对抗网络 对抗制 人行横道 障碍物 生成语法 机器学习 人工智能 运输工程 深度学习 工程类 地理 考古
作者
James Spooner,Vasile Palade,Madeline Cheah,Stratis Kanarachos,Alireza Daneshkhah
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 471-471 被引量:18
标识
DOI:10.3390/app11020471
摘要

The safety of vulnerable road users is of paramount importance as transport moves towards fully automated driving. The richness of real-world data required for testing autonomous vehicles is limited and furthermore, available data do not present a fair representation of different scenarios and rare events. Before deploying autonomous vehicles publicly, their abilities must reach a safety threshold, not least with regards to vulnerable road users, such as pedestrians. In this paper, we present a novel Generative Adversarial Networks named the Ped-Cross GAN. Ped-Cross GAN is able to generate crossing sequences of pedestrians in the form of human pose sequences. The Ped-Cross GAN is trained with the Pedestrian Scenario dataset. The novel Pedestrian Scenario dataset, derived from existing datasets, enables training on richer pedestrian scenarios. We demonstrate an example of its use through training and testing the Ped-Cross GAN. The results show that the Ped-Cross GAN is able to generate new crossing scenarios that are of the same distribution from those contained in the Pedestrian Scenario dataset. Having a method with these capabilities is important for the future of transport, as it will allow for the adequate testing of Connected and Autonomous Vehicles on how they correctly perceive the intention of pedestrians crossing the street, ultimately leading to fewer pedestrian casualties on our roads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
科研通AI5应助务实的不悔采纳,获得100
3秒前
4秒前
5秒前
6秒前
7秒前
Maria发布了新的文献求助10
7秒前
wn2020wn发布了新的文献求助10
9秒前
风中乐松发布了新的文献求助10
9秒前
平淡荟完成签到,获得积分10
9秒前
10秒前
机智觅柔发布了新的文献求助10
11秒前
无花果应助二七采纳,获得10
11秒前
田様应助zjj采纳,获得10
12秒前
无语的安白应助月夕采纳,获得30
13秒前
微微又潇潇完成签到,获得积分10
14秒前
平淡荟发布了新的文献求助10
15秒前
coolkid应助科研通管家采纳,获得10
15秒前
小宋应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
昏睡的蟠桃应助科研通管家采纳,获得200
16秒前
coolkid应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
小宋应助科研通管家采纳,获得10
16秒前
小宋应助科研通管家采纳,获得10
16秒前
机灵向日葵完成签到 ,获得积分10
19秒前
wch666发布了新的文献求助10
19秒前
19秒前
20秒前
华仔应助艳艳采纳,获得10
21秒前
所所应助zmu-yjy采纳,获得10
21秒前
tulip关注了科研通微信公众号
21秒前
22秒前
22秒前
英俊的铭应助兰彻采纳,获得10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847422
求助须知:如何正确求助?哪些是违规求助? 3389996
关于积分的说明 10559998
捐赠科研通 3110413
什么是DOI,文献DOI怎么找? 1714306
邀请新用户注册赠送积分活动 825205
科研通“疑难数据库(出版商)”最低求助积分说明 775340