Identification of high-risk carotid plaque with MRI-based radiomics and machine learning

无线电技术 神经组阅片室 医学 介入放射学 放射科 鉴定(生物学) 超声波 磁共振成像 医学物理学 神经学 植物 精神科 生物
作者
Ranying Zhang,Qing‐Wei Zhang,Aihua Ji,Peng Lv,Jingjing Zhang,Caixia Fu,Jiang Lin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (5): 3116-3126 被引量:83
标识
DOI:10.1007/s00330-020-07361-z
摘要

We sought to build a high-risk plaque MRI-based model (HRPMM) using radiomics features and machine learning for differentiating symptomatic from asymptomatic carotid plaques. One hundred sixty-two patients with carotid stenosis were randomly divided into training and test cohorts. Multi-contrast MRI including time of flight (TOF), T1- and T2-weighted imaging, and contrast-enhanced imaging was done. Radiological characteristics of the carotid plaques were recorded and calculated to build a traditional model. After extracting the radiomics features on these images, we constructed HRPMM with least absolute shrinkage and selection operator algorithm in the training cohort and evaluated its performance in the test cohort. A combined model was also built using both the traditional and radiomics features. The performance of all the models in the identification of high-risk carotid plaque was compared. Intraplaque hemorrhage and lipid-rich necrotic core were independently associated with clinical symptoms and were used to build the traditional model, which achieved an area under the curve (AUC) of 0.825 versus 0.804 in the training and test cohorts. The HRPMM and the combined model achieved an AUC of 0.988 versus 0.984 and of 0.989 versus 0.986 respectively in the two cohorts. Both the radiomics model and combined model outperformed the traditional model, whereas the combined model showed no significant difference with the HRPMM. Our MRI-based radiomics model can accurately distinguish symptomatic from asymptomatic carotid plaques. It is superior to the traditional model in the identification of high-risk plaques. • Carotid plaque multi-contrast MRI stores other valuable information to be further exploited by radiomics analysis. • Radiomics analysis can accurately distinguish symptomatic from asymptomatic carotid plaques. • The radiomics model is superior to the traditional model in the identification of high-risk plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路的寒云完成签到,获得积分20
1秒前
Jasper应助清爽太阳采纳,获得10
2秒前
3秒前
ICEBLUE完成签到,获得积分10
3秒前
3秒前
xuyuhao发布了新的文献求助10
4秒前
朴素豪完成签到,获得积分10
4秒前
5秒前
phter应助江大橘采纳,获得10
5秒前
dch完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
安静代萱完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
liushiyi完成签到,获得积分10
9秒前
wsws发布了新的文献求助10
9秒前
10秒前
SciGPT应助1233采纳,获得10
11秒前
11秒前
朝し发布了新的文献求助10
11秒前
大模型应助细腻的夜天采纳,获得10
13秒前
13秒前
何永森发布了新的文献求助10
13秒前
斯文败类应助cyf采纳,获得10
14秒前
14秒前
万能图书馆应助十七采纳,获得10
15秒前
上官若男应助momo采纳,获得30
15秒前
delta发布了新的文献求助10
15秒前
CodeCraft应助桐1210采纳,获得10
16秒前
鱿鱼炒黄瓜完成签到,获得积分10
16秒前
严逍遥完成签到,获得积分10
16秒前
大橘大李发布了新的文献求助10
17秒前
17秒前
朝し完成签到,获得积分10
18秒前
18秒前
吴彦祖发布了新的文献求助10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182095
求助须知:如何正确求助?哪些是违规求助? 3718222
关于积分的说明 11720427
捐赠科研通 3397926
什么是DOI,文献DOI怎么找? 1864319
邀请新用户注册赠送积分活动 922165
科研通“疑难数据库(出版商)”最低求助积分说明 833870