Identification of high-risk carotid plaque with MRI-based radiomics and machine learning

无线电技术 神经组阅片室 医学 介入放射学 放射科 鉴定(生物学) 超声波 磁共振成像 医学物理学 神经学 植物 生物 精神科
作者
Ranying Zhang,Qingwei Zhang,Aihua Ji,Peng Lv,Jingjing Zhang,Caixia Fu,Jiang Lin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (5): 3116-3126 被引量:86
标识
DOI:10.1007/s00330-020-07361-z
摘要

We sought to build a high-risk plaque MRI-based model (HRPMM) using radiomics features and machine learning for differentiating symptomatic from asymptomatic carotid plaques. One hundred sixty-two patients with carotid stenosis were randomly divided into training and test cohorts. Multi-contrast MRI including time of flight (TOF), T1- and T2-weighted imaging, and contrast-enhanced imaging was done. Radiological characteristics of the carotid plaques were recorded and calculated to build a traditional model. After extracting the radiomics features on these images, we constructed HRPMM with least absolute shrinkage and selection operator algorithm in the training cohort and evaluated its performance in the test cohort. A combined model was also built using both the traditional and radiomics features. The performance of all the models in the identification of high-risk carotid plaque was compared. Intraplaque hemorrhage and lipid-rich necrotic core were independently associated with clinical symptoms and were used to build the traditional model, which achieved an area under the curve (AUC) of 0.825 versus 0.804 in the training and test cohorts. The HRPMM and the combined model achieved an AUC of 0.988 versus 0.984 and of 0.989 versus 0.986 respectively in the two cohorts. Both the radiomics model and combined model outperformed the traditional model, whereas the combined model showed no significant difference with the HRPMM. Our MRI-based radiomics model can accurately distinguish symptomatic from asymptomatic carotid plaques. It is superior to the traditional model in the identification of high-risk plaques. • Carotid plaque multi-contrast MRI stores other valuable information to be further exploited by radiomics analysis. • Radiomics analysis can accurately distinguish symptomatic from asymptomatic carotid plaques. • The radiomics model is superior to the traditional model in the identification of high-risk plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
思源应助霸气的玉兰采纳,获得10
1秒前
2秒前
Thorns发布了新的文献求助10
2秒前
2秒前
晚灯发布了新的文献求助10
3秒前
ken完成签到,获得积分10
3秒前
guo完成签到,获得积分10
5秒前
llll完成签到,获得积分10
5秒前
wmn发布了新的文献求助10
5秒前
嘿撒发布了新的文献求助10
5秒前
科研通AI6应助七塔蹦采纳,获得100
6秒前
钟叉烧完成签到,获得积分20
6秒前
ZZ发布了新的文献求助10
6秒前
追寻夜香完成签到 ,获得积分10
7秒前
dd36完成签到,获得积分10
7秒前
joker_k完成签到,获得积分10
7秒前
Panpp给Panpp的求助进行了留言
7秒前
8秒前
8秒前
Thorns完成签到,获得积分10
8秒前
晚灯完成签到,获得积分10
8秒前
8秒前
akun发布了新的文献求助10
9秒前
优秀含羞草完成签到,获得积分10
10秒前
buno应助花在开采纳,获得10
10秒前
zhengzhao完成签到,获得积分10
10秒前
852应助温柔的尔芙采纳,获得10
10秒前
8564523完成签到,获得积分10
10秒前
11秒前
爆米花应助wmn采纳,获得10
11秒前
神游物外完成签到,获得积分10
12秒前
12秒前
13秒前
笑点低易真完成签到,获得积分10
13秒前
机智灵薇完成签到,获得积分10
13秒前
丘比特应助颜靖仇采纳,获得10
13秒前
浮游应助颜靖仇采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4755977
求助须知:如何正确求助?哪些是违规求助? 4099220
关于积分的说明 12683475
捐赠科研通 3813239
什么是DOI,文献DOI怎么找? 2105141
邀请新用户注册赠送积分活动 1129957
关于科研通互助平台的介绍 1007956