Identification of high-risk carotid plaque with MRI-based radiomics and machine learning

无线电技术 神经组阅片室 医学 介入放射学 放射科 鉴定(生物学) 超声波 磁共振成像 医学物理学 神经学 植物 生物 精神科
作者
Ranying Zhang,Qingwei Zhang,Aihua Ji,Peng Lv,Jingjing Zhang,Caixia Fu,Li Jiang
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (5): 3116-3126 被引量:100
标识
DOI:10.1007/s00330-020-07361-z
摘要

We sought to build a high-risk plaque MRI-based model (HRPMM) using radiomics features and machine learning for differentiating symptomatic from asymptomatic carotid plaques. One hundred sixty-two patients with carotid stenosis were randomly divided into training and test cohorts. Multi-contrast MRI including time of flight (TOF), T1- and T2-weighted imaging, and contrast-enhanced imaging was done. Radiological characteristics of the carotid plaques were recorded and calculated to build a traditional model. After extracting the radiomics features on these images, we constructed HRPMM with least absolute shrinkage and selection operator algorithm in the training cohort and evaluated its performance in the test cohort. A combined model was also built using both the traditional and radiomics features. The performance of all the models in the identification of high-risk carotid plaque was compared. Intraplaque hemorrhage and lipid-rich necrotic core were independently associated with clinical symptoms and were used to build the traditional model, which achieved an area under the curve (AUC) of 0.825 versus 0.804 in the training and test cohorts. The HRPMM and the combined model achieved an AUC of 0.988 versus 0.984 and of 0.989 versus 0.986 respectively in the two cohorts. Both the radiomics model and combined model outperformed the traditional model, whereas the combined model showed no significant difference with the HRPMM. Our MRI-based radiomics model can accurately distinguish symptomatic from asymptomatic carotid plaques. It is superior to the traditional model in the identification of high-risk plaques. • Carotid plaque multi-contrast MRI stores other valuable information to be further exploited by radiomics analysis. • Radiomics analysis can accurately distinguish symptomatic from asymptomatic carotid plaques. • The radiomics model is superior to the traditional model in the identification of high-risk plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
6秒前
6秒前
Xixicccccccc发布了新的文献求助10
6秒前
zhuling发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
科研通AI6.1应助LS采纳,获得10
9秒前
Ava应助xiaomeng采纳,获得10
10秒前
11秒前
稳重的向日葵完成签到,获得积分10
11秒前
12秒前
Good39发布了新的文献求助10
12秒前
LYB发布了新的文献求助10
13秒前
13秒前
坦率灵槐应助草木采纳,获得10
14秒前
大观天下发布了新的文献求助10
14秒前
14秒前
16秒前
ljc2完成签到,获得积分10
16秒前
哆来米发布了新的文献求助10
17秒前
wzy完成签到 ,获得积分10
18秒前
18秒前
Ava应助淡然绝山采纳,获得10
18秒前
18秒前
20秒前
aeolianbells发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
Rw发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
EchoH应助单纯你杰采纳,获得10
24秒前
24秒前
aa发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738458
求助须知:如何正确求助?哪些是违规求助? 5377795
关于积分的说明 15337854
捐赠科研通 4881463
什么是DOI,文献DOI怎么找? 2623561
邀请新用户注册赠送积分活动 1572306
关于科研通互助平台的介绍 1529100