Evaluation of interrater reliability of different muscle segmentation techniques in diffusion tensor imaging

纤维束成像 磁共振弥散成像 等级间信度 分割 磁共振成像 医学 计算机科学 放射科 人工智能 数学 统计 评定量表
作者
Johannes Forsting,Robert Rehmann,Marlena Rohm,Martijn Froeling,Lara Schlaffke
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:34 (2) 被引量:9
标识
DOI:10.1002/nbm.4430
摘要

Introduction Muscle diffusion tensor imaging (mDTI) is a quantitative MRI technique that can provide information about muscular microstructure and integrity. Ultrasound and DTI studies have shown intramuscular differences, and therefore separation of different muscles for analysis is essential. The commonly used methods to assess DTI metrics in muscles are manual segmentation and tract‐based analysis. Recently methods such as volume‐based tractography have been applied to optimize muscle architecture estimation, but can also be used to assess DTI metrics. Purpose To evaluate diffusion metrics obtained using three different methods—volume‐based tractography, manual segmentation‐based analysis and tract‐based analysis—with respect to their interrater reliability and their ability to detect intramuscular variance. Materials and methods 30 volunteers underwent an MRI examination in a 3 T scanner using a 16‐channel Torso XL coil. Diffusion‐weighted images were acquired to obtain DTI metrics. These metrics were evaluated in six thigh muscles using volume‐based tractography, manual segmentation and standard tractography. All three methods were performed by two independent raters to assess interrater reliability by ICC analysis and Bland‐Altman plots. Ability to assess intramuscular variance was compared using an ANOVA with muscle as a between‐subjects factor. Results Interrater reliability for all methods was found to be excellent. The highest interrater reliability was found for volume‐based tractography (ICC ≥ 0.967). Significant differences for the factor muscle in all examined diffusion parameters were shown in muscles using all methods (main effect p < 0.001). Conclusions Diffusion data can be assessed by volume tractography, standard tractography and manual segmentation with high interrater reliability. Each method produces different results for the investigated DTI parameters. Volume‐based tractography was superior to conventional manual segmentation and tractography regarding interrater reliability and detection of intramuscular variance, while tract‐based analysis showed the lowest coefficients of variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助线条采纳,获得10
1秒前
赧然发布了新的文献求助10
1秒前
诚心的松思完成签到,获得积分10
3秒前
3秒前
DJH发布了新的文献求助10
4秒前
latata完成签到,获得积分10
4秒前
脑洞疼应助迷城采纳,获得10
4秒前
5秒前
ding应助自信书竹采纳,获得10
6秒前
PhD完成签到,获得积分10
6秒前
6秒前
tt完成签到,获得积分10
6秒前
cellulose完成签到,获得积分10
7秒前
asdf完成签到 ,获得积分10
7秒前
小二郎应助哈哈哈采纳,获得10
8秒前
8秒前
生动映波发布了新的文献求助10
10秒前
11秒前
杨华启完成签到,获得积分10
11秒前
我666发布了新的文献求助10
12秒前
Singularity应助乐观的大树采纳,获得10
12秒前
君莫问发布了新的文献求助10
12秒前
sweet发布了新的文献求助10
12秒前
李爱国应助滴滴滴采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
满意的柏柳完成签到 ,获得积分10
15秒前
天天快乐应助sgqtzdzq采纳,获得10
16秒前
浮游应助oleskarabach采纳,获得10
16秒前
17秒前
李爱国应助开朗的睫毛膏采纳,获得10
18秒前
桐桐应助标致爆米花采纳,获得10
18秒前
19秒前
愉快飞风完成签到,获得积分10
21秒前
浅色墨水完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
23秒前
君莫问发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982