Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 超声波 乳腺超声检查 学习迁移 乳腺癌 人工神经网络 乳腺摄影术 放射科 癌症 医学 内科学
作者
Yi Wang,Eun Jung Choi,Younhee Choi,Hao Zhang,Gong Yong Jin,Seok‐Bum Ko
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:46 (5): 1119-1132 被引量:118
标识
DOI:10.1016/j.ultrasmedbio.2020.01.001
摘要

To assist radiologists in breast cancer classification in automated breast ultrasound (ABUS) imaging, we propose a computer-aided diagnosis based on a convolutional neural network (CNN) that classifies breast lesions as benign and malignant. The proposed CNN adopts a modified Inception-v3 architecture to provide efficient feature extraction in ABUS imaging. Because the ABUS images can be visualized in transverse and coronal views, the proposed CNN provides an efficient way to extract multiview features from both views. The proposed CNN was trained and evaluated on 316 breast lesions (135 malignant and 181 benign). An observer performance test was conducted to compare five human reviewers' diagnostic performance before and after referring to the predicting outcomes of the proposed CNN. Our method achieved an area under the curve (AUC) value of 0.9468 with five-folder cross-validation, for which the sensitivity and specificity were 0.886 and 0.876, respectively. Compared with conventional machine learning-based feature extraction schemes, particularly principal component analysis (PCA) and histogram of oriented gradients (HOG), our method achieved a significant improvement in classification performance. The proposed CNN achieved a >10% increased AUC value compared with PCA and HOG. During the observer performance test, the diagnostic results of all human reviewers had increased AUC values and sensitivities after referring to the classification results of the proposed CNN, and four of the five human reviewers' AUCs were significantly improved. The proposed CNN employing a multiview strategy showed promise for the diagnosis of breast cancer, and could be used as a second reviewer for increasing diagnostic reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助yan采纳,获得20
刚刚
刚刚
1秒前
美好斓发布了新的文献求助10
1秒前
逢考必过完成签到,获得积分10
2秒前
Who1990完成签到,获得积分10
3秒前
yi0完成签到,获得积分10
3秒前
双shuang发布了新的文献求助10
3秒前
丹丹发布了新的文献求助10
3秒前
4秒前
不辞完成签到,获得积分10
4秒前
qiuzhiqi发布了新的文献求助10
4秒前
雾散完成签到,获得积分10
4秒前
x跳完成签到,获得积分10
4秒前
Q123ba叭发布了新的文献求助10
4秒前
Christian完成签到,获得积分10
4秒前
CL完成签到,获得积分10
5秒前
Zel博博完成签到,获得积分10
5秒前
lwl666完成签到,获得积分10
5秒前
5秒前
5秒前
oranka1完成签到,获得积分10
5秒前
HMZ完成签到,获得积分10
6秒前
一梦三四年完成签到 ,获得积分10
6秒前
明理夏波完成签到 ,获得积分10
6秒前
6秒前
jiusi完成签到 ,获得积分10
6秒前
可爱的石头完成签到,获得积分10
6秒前
彭于晏应助像只猫采纳,获得10
6秒前
闪闪岩完成签到,获得积分10
7秒前
7秒前
刘松发布了新的文献求助10
8秒前
lovesonic完成签到,获得积分10
8秒前
小太阳完成签到,获得积分0
9秒前
Chu_JH完成签到,获得积分10
9秒前
CL发布了新的文献求助10
9秒前
传奇3应助zhang005on采纳,获得10
10秒前
夜凉如水完成签到,获得积分10
10秒前
吃花生酱的猫完成签到,获得积分10
10秒前
10秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848025
求助须知:如何正确求助?哪些是违规求助? 3390786
关于积分的说明 10563302
捐赠科研通 3111238
什么是DOI,文献DOI怎么找? 1714660
邀请新用户注册赠送积分活动 825417
科研通“疑难数据库(出版商)”最低求助积分说明 775515