油藏计算
记忆电阻器
计算机科学
任务(项目管理)
过程(计算)
领域(数学分析)
功能(生物学)
非线性系统
人工神经网络
系列(地层学)
人工智能
循环神经网络
模式识别(心理学)
电子工程
数学
数学分析
工程类
物理
操作系统
古生物学
生物
进化生物学
量子力学
经济
管理
作者
Chao Du,Fuxi Cai,Mohammed A. Zidan,Wen Ma,Seung Hwan Lee,Wei Lü
标识
DOI:10.1038/s41467-017-02337-y
摘要
Reservoir computing systems utilize dynamic reservoirs having short-term memory to project features from the temporal inputs into a high-dimensional feature space. A readout function layer can then effectively analyze the projected features for tasks, such as classification and time-series analysis. The system can efficiently compute complex and temporal data with low-training cost, since only the readout function needs to be trained. Here we experimentally implement a reservoir computing system using a dynamic memristor array. We show that the internal ionic dynamic processes of memristors allow the memristor-based reservoir to directly process information in the temporal domain, and demonstrate that even a small hardware system with only 88 memristors can already be used for tasks, such as handwritten digit recognition. The system is also used to experimentally solve a second-order nonlinear task, and can successfully predict the expected output without knowing the form of the original dynamic transfer function.
科研通智能强力驱动
Strongly Powered by AbleSci AI