Self-Supervised Generalisation with Meta Auxiliary Learning

人工智能 心理学 计算机科学 机器学习
作者
Shikun Liu,Andrew J. Davison,Edward Johns
出处
期刊:Cornell University - arXiv 被引量:63
标识
DOI:10.48550/arxiv.1901.08933
摘要

Learning with auxiliary tasks can improve the ability of a primary task to generalise. However, this comes at the cost of manually labelling auxiliary data. We propose a new method which automatically learns appropriate labels for an auxiliary task, such that any supervised learning task can be improved without requiring access to any further data. The approach is to train two neural networks: a label-generation network to predict the auxiliary labels, and a multi-task network to train the primary task alongside the auxiliary task. The loss for the label-generation network incorporates the loss of the multi-task network, and so this interaction between the two networks can be seen as a form of meta learning with a double gradient. We show that our proposed method, Meta AuXiliary Learning (MAXL), outperforms single-task learning on 7 image datasets, without requiring any additional data. We also show that MAXL outperforms several other baselines for generating auxiliary labels, and is even competitive when compared with human-defined auxiliary labels. The self-supervised nature of our method leads to a promising new direction towards automated generalisation. Source code can be found at https://github.com/lorenmt/maxl.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iNk应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
芒果发布了新的文献求助10
3秒前
3秒前
CGW发布了新的文献求助10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
小初应助科研通管家采纳,获得10
3秒前
Lasse应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得10
4秒前
4秒前
淡淡从安完成签到 ,获得积分10
4秒前
5秒前
大模型应助高会和采纳,获得10
5秒前
HCB1完成签到,获得积分10
6秒前
Ava应助叶琳采纳,获得10
8秒前
彭于晏应助pianoboy采纳,获得10
8秒前
11秒前
美满夏寒完成签到,获得积分10
11秒前
在水一方应助安静绿草采纳,获得10
12秒前
迷人发布了新的文献求助10
13秒前
彭于晏应助珺儿采纳,获得10
14秒前
Srishti完成签到,获得积分10
14秒前
ZWOKD发布了新的文献求助10
16秒前
hhyy发布了新的文献求助10
16秒前
17秒前
研友_Z1eDgZ发布了新的文献求助30
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Improving Educational Outcomes of Vulnerable Children 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825171
求助须知:如何正确求助?哪些是违规求助? 3367479
关于积分的说明 10445925
捐赠科研通 3086861
什么是DOI,文献DOI怎么找? 1698328
邀请新用户注册赠送积分活动 816688
科研通“疑难数据库(出版商)”最低求助积分说明 769937