弗拉塔辛
生物
生物发生
共济失调
细胞生物学
缺氧(环境)
线粒体
乌头酸酶
铁硫簇
铁结合蛋白
遗传学
生物化学
基因
氧气
神经科学
酶
化学
有机化学
作者
Tslil Ast,Joshua D. Meisel,Shachin Patra,Hong Wang,Robert M. H. Grange,Sharon Kim,Sarah E. Calvo,Lauren L. Orefice,Fumiaki Nagashima,Fumito Ichinose,Warren M. Zapol,Gary Ruvkun,D.P. Barondeau,Vamsi K. Mootha
出处
期刊:Cell
[Cell Press]
日期:2019-05-01
卷期号:177 (6): 1507-1521.e16
被引量:85
标识
DOI:10.1016/j.cell.2019.03.045
摘要
Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.
科研通智能强力驱动
Strongly Powered by AbleSci AI