Cluster model incorporating heterogeneous dose distribution of partial parotid irradiation for radiotherapy induced xerostomia prediction with machine learning methods

支持向量机 逻辑回归 接收机工作特性 人工智能 朴素贝叶斯分类器 判别式 医学 交叉验证 随机森林 模式识别(心理学) 核医学 机器学习 统计 计算机科学 数学
作者
Ming Chao,Issam El Naqa,Richard L. Bakst,Yeh‐Chi Lo,J Penagaricano
出处
期刊:Acta Oncologica [Taylor & Francis]
卷期号:61 (7): 842-848 被引量:6
标识
DOI:10.1080/0284186x.2022.2073187
摘要

A cluster model incorporating heterogeneous dose distribution within the parotid gland was developed and validated retrospectively for radiotherapy (RT) induced xerostomia prediction with machine learning (ML) techniques.Sixty clusters were obtained at 1 Gy step size with threshold doses ranging from 1 to 60 Gy, for each of the enrolled 155 patients with HNC from three institutions. Feature clusters were selected with the neighborhood component analysis (NCA) and subsequently fed into four supervised ML models for xerostomia prediction comparison: support vector machines (SVM), k-nearest neighbor (kNN), naïve Bayes (NB), and random forest (RF). The predictive performance of each model was evaluated using cross validation resampling with the area-under-the-curves (AUC) of the receiver-operating-characteristic (ROC). The xerostomia predicting capacity using testing data was assessed with accuracy, sensitivity, and specificity for these models and three cluster connectivity choices. Mean dose based logistic regression served as the benchmark for evaluation.Feature clusters identified by NCA fell in three threshold dose ranges: 5-15Gy, 25-35Gy, and 45-50Gy. Mean dose predictive power was 15% lower than that of the cluster model using the logistic regression classifier. Model validation demonstrated that kNN model outperformed slightly other three models but no substantial difference was observed. Applying the fine-tuned models to testing data yielded that the mean accuracy from SVM, kNN and NB models were between 0.68 and 0.7 while that of RF was ∼0.6. SVM model yielded the best sensitivity (0.76) and kNN model delivered consistent sensitivity and specificity. This is consistent with cross validation. Clusters calculated with three connectivity choices exhibited minimally different predictions.Compared to mean dose, the proposed cluster model has shown its improvement as the xerostomia predictor. When combining with ML techniques, it could provide a clinically useful tool for xerostomia prediction and facilitate decision making during radiotherapy planning for patients with HNC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wind应助翼只猫猫喵喵喵采纳,获得10
1秒前
2秒前
麦皮仔完成签到,获得积分10
2秒前
Arvinyang90发布了新的文献求助10
2秒前
林娜琏完成签到,获得积分20
2秒前
深情安青应助noobmaster采纳,获得10
3秒前
科目三应助Sir.夏季风采纳,获得10
3秒前
4秒前
4秒前
wanci应助fengzhang采纳,获得10
4秒前
大方博涛完成签到,获得积分10
5秒前
可爱的函函应助关键词采纳,获得10
5秒前
哭泣的海豚完成签到,获得积分10
7秒前
从容飞阳发布了新的文献求助10
8秒前
jun发布了新的文献求助10
8秒前
8秒前
9秒前
Lighter完成签到,获得积分10
9秒前
9秒前
10秒前
ikun完成签到,获得积分10
10秒前
11秒前
11秒前
xuan关注了科研通微信公众号
11秒前
12秒前
David完成签到,获得积分0
12秒前
小马甲应助碧瑶采纳,获得20
13秒前
饼饼完成签到,获得积分10
13秒前
13秒前
drleslie发布了新的文献求助10
14秒前
Two_h发布了新的文献求助10
14秒前
14秒前
Hazel完成签到,获得积分10
15秒前
AAAAA发布了新的文献求助10
15秒前
max发布了新的文献求助10
16秒前
王则前完成签到,获得积分20
16秒前
caitSith发布了新的文献求助10
17秒前
17秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158658
求助须知:如何正确求助?哪些是违规求助? 3694534
关于积分的说明 11666408
捐赠科研通 3386675
什么是DOI,文献DOI怎么找? 1857197
邀请新用户注册赠送积分活动 918255
科研通“疑难数据库(出版商)”最低求助积分说明 831434