A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method

兴趣点 计算机科学 图形 空间语境意识 背景(考古学) 土地利用 卷积神经网络 人工智能 地图学 数据挖掘 模式识别(心理学) 机器学习 地理 理论计算机科学 工程类 土木工程 考古
作者
Yongyang Xu,Bo Zhou,Shuai Jin,Xuejing Xie,Zhanlong Chen,Sheng Hu,Nan He
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:95: 101807-101807 被引量:70
标识
DOI:10.1016/j.compenvurbsys.2022.101807
摘要

Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助苦短采纳,获得10
刚刚
2秒前
子车茗应助Fff采纳,获得60
2秒前
慕青应助szr采纳,获得10
2秒前
2秒前
qinqin完成签到,获得积分20
2秒前
jgpiao发布了新的文献求助10
3秒前
研友_ZelX0n完成签到,获得积分10
3秒前
NexusExplorer应助英俊不凡采纳,获得10
3秒前
gmc关闭了gmc文献求助
3秒前
3秒前
ppw完成签到,获得积分10
3秒前
江南之南完成签到 ,获得积分10
4秒前
沉默飞松完成签到,获得积分10
4秒前
无花果应助米九采纳,获得10
4秒前
入海发布了新的文献求助10
5秒前
5秒前
Ranjie发布了新的文献求助10
5秒前
听雨眠发布了新的文献求助10
6秒前
无情洋葱应助负责的皮卡丘采纳,获得150
6秒前
7秒前
lancerimpp发布了新的文献求助10
7秒前
fuqiyao完成签到,获得积分10
7秒前
7秒前
三水发布了新的文献求助10
8秒前
8秒前
8秒前
spp完成签到,获得积分10
9秒前
狂野的明杰完成签到,获得积分10
9秒前
胡萝卜发布了新的文献求助10
9秒前
10秒前
轻雨完成签到 ,获得积分10
11秒前
zszzzsss发布了新的文献求助10
11秒前
kjlee完成签到,获得积分10
11秒前
Antares发布了新的文献求助10
12秒前
Jewel_719完成签到,获得积分10
12秒前
fuqiyao发布了新的文献求助10
12秒前
XHT完成签到,获得积分10
12秒前
13秒前
周一一发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070491
求助须知:如何正确求助?哪些是违规求助? 4291579
关于积分的说明 13370992
捐赠科研通 4111872
什么是DOI,文献DOI怎么找? 2251722
邀请新用户注册赠送积分活动 1256838
关于科研通互助平台的介绍 1189480