A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method

兴趣点 计算机科学 图形 空间语境意识 背景(考古学) 土地利用 卷积神经网络 人工智能 地图学 数据挖掘 模式识别(心理学) 机器学习 地理 理论计算机科学 工程类 考古 土木工程
作者
Yongyang Xu,Bo Zhou,Shuai Jin,Xuejing Xie,Zhanlong Chen,Sheng Hu,Nan He
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:95: 101807-101807 被引量:51
标识
DOI:10.1016/j.compenvurbsys.2022.101807
摘要

Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
刚刚
虚拟的以南完成签到,获得积分10
1秒前
1秒前
皮皮蛙完成签到,获得积分10
1秒前
彭于晏应助玛璃鸶采纳,获得10
2秒前
黄函发布了新的文献求助10
2秒前
Ava应助cccttt采纳,获得10
2秒前
coconut完成签到,获得积分10
3秒前
wendinfgmei发布了新的文献求助10
3秒前
香蕉觅云应助剪影改采纳,获得10
4秒前
记忆里的阳光完成签到,获得积分10
4秒前
dachengzi完成签到,获得积分10
4秒前
Orange应助酒酿萝卜皮采纳,获得10
4秒前
_是小满完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
慕青应助不知道叫啥采纳,获得10
6秒前
6秒前
6秒前
Alina1874完成签到,获得积分10
6秒前
香蕉觅云应助yusong采纳,获得10
7秒前
李婷婷完成签到,获得积分10
7秒前
Garry完成签到,获得积分10
7秒前
平城落叶完成签到,获得积分10
7秒前
小马过河完成签到,获得积分10
7秒前
7秒前
ruochenzu完成签到,获得积分10
8秒前
茕穹完成签到,获得积分10
8秒前
zjj完成签到,获得积分10
8秒前
松子发布了新的文献求助10
8秒前
SciGPT应助张惠采纳,获得10
8秒前
zane发布了新的文献求助10
9秒前
洁净的锦程完成签到 ,获得积分10
9秒前
9秒前
9秒前
Vi发布了新的文献求助20
10秒前
背后的小白菜完成签到,获得积分10
10秒前
20150327发布了新的文献求助10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881