An Improved Facial Expression Recognition Method Using Combined Hog and Gabor Features

人工智能 计算机科学 模式识别(心理学) 支持向量机 直方图 分类 面子(社会学概念) 面部表情 特征提取 表达式(计算机科学) 三维人脸识别 定向梯度直方图 计算机视觉 面部识别系统 特征(语言学) 纹理(宇宙学) 局部二进制模式 人脸检测 图像(数学) 社会科学 语言学 哲学 社会学 程序设计语言
作者
Zewar Fadhlilddin Hasan
出处
期刊:Science journal of University of Zakho [Science Journal of University of Zakho]
卷期号:10 (2): 54-59 被引量:1
标识
DOI:10.25271/sjuoz.2022.10.2.897
摘要

Lately, face recognition technology has been a significant study and a topic for generations. It remains a difficult task because of the variability of wide interclass. The subject of facial expression recognition is addressed in this research using a practical method. This method can recognize the human face and it is various features such as the eyes, brows, and lips. The motions or deformations of the face muscles are the cause of facial expressions. In addition, computer vision tasks such as texture recognition and categorization are commonly used. Furthermore, feature extraction basically discovers groups of features that demonstrate an image of visual texture. It is a critical phase to complete the operation. This work extracts features utilizing Histogram of Oriented Gradients (HOG) and Gabor approaches and then combines extracted features to improve the accuracy of facial expression detection. The derived features were particularly sensitive to object deformations. Later on, the classification of facial expression is handled using (Support Vector Machine) SVM. Analyze the proposed approach on FER 2013 data to see how well it performs. The proposal has a categorization rate of 63.82% on average. The proposed technique determines the comparable classification accuracy as shown in experimental findings. To improve this work it is planned to use deep features and combined them with HOG or Gabor, as well as to show the efficiency of the work it can be implemented with more datasets such as the JAFFE database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小超人发布了新的文献求助10
2秒前
a_hu发布了新的文献求助10
3秒前
4秒前
4秒前
Wdd发布了新的文献求助10
4秒前
5秒前
8秒前
8秒前
8秒前
HHR33发布了新的文献求助10
10秒前
华仔应助嘘嘘采纳,获得10
10秒前
李爱国应助外向访卉采纳,获得10
11秒前
coolkid应助小超人采纳,获得20
12秒前
六斤米完成签到,获得积分10
12秒前
正在获取昵称中...完成签到,获得积分10
12秒前
顾矜应助荆楚小厮i采纳,获得10
13秒前
李健的粉丝团团长应助ayra采纳,获得10
13秒前
海岢完成签到,获得积分10
14秒前
无碍发布了新的文献求助10
15秒前
x的绝对值完成签到,获得积分10
15秒前
小马甲应助天天小女孩采纳,获得10
17秒前
阳光大有完成签到,获得积分10
17秒前
17秒前
sainanTang完成签到,获得积分10
18秒前
文献搬运工完成签到 ,获得积分10
18秒前
英姑应助一苇以航采纳,获得10
19秒前
19秒前
香蕉觅云应助冷酷的可乐采纳,获得10
21秒前
低调小狗完成签到,获得积分10
21秒前
Rio发布了新的文献求助10
21秒前
柯幼萱完成签到 ,获得积分10
21秒前
调皮的吐司完成签到,获得积分10
22秒前
23秒前
zjj发布了新的文献求助10
23秒前
azure发布了新的文献求助10
23秒前
科研通AI5应助方秃秃采纳,获得10
23秒前
向秋发布了新的文献求助10
25秒前
25秒前
HYLynn应助耍酷的汲采纳,获得10
25秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223