Reliable and Secure Deep Learning-Based OFDM-DCSK Transceiver Design Without Delivery of Reference Chaotic Sequences

计算机科学 混乱的 正交频分复用 收发机 频道(广播) 误码率 传输(电信) 电子工程 人工神经网络 同步(交流) 水准点(测量) 可靠性(半导体) 干扰(通信) 实时计算 人工智能 无线 计算机网络 电信 工程类 量子力学 物理 功率(物理) 地理 大地测量学
作者
Haotian Zhang,Lin Zhang,Yuan Jiang,Zhiqiang Wu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (8): 8059-8074 被引量:15
标识
DOI:10.1109/tvt.2022.3175968
摘要

Chaos-based communications can be applied to high-speed vehicular information transmissions thanks to the anti-jamming and anti-interference capabilities of chaotic transmissions. In traditional practical chaotic systems, reference chaotic signals are required to be delivered to remove complex chaotic synchronization circuits. However, the direct transmission of reference signals will degrade the security performances, while interferences and noises imposed on the reference signals due to imperfect channel conditions will deteriorate the reliability performances. In order to enhance the reliability and security performances over vehicular channels such as the railway channel and the channels undergoing fast fadings, in this paper, we propose a deep learning (DL) aided intelligent OFDM-DCSK transceiver. In this design, no reference chaotic signals are delivered, and we propose to utilize the time-delay neural network (TDNN) to learn the chaotic maps, followed by the long short-term memory (LSTM) units to extract and exploit the correlations between chaotic modulated signals, and multiple fully connected layers (FCLs) to estimate the user bit data. With the aid of the constructed deep neural network (DNN), after the offline neural network training, the receiver can recover the transmitted information with lower bit error rate (BER) and enhance security performances. Theoretical performance is then analyzed for the proposed intelligent transceiver. Simulation results validate the proposed design, and demonstrate that the intelligent DL-based OFDM-DCSK system can achieve better BER and security performances over fast fading and railway channels compared with the benchmark systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助MYN采纳,获得10
刚刚
刚刚
樱桃完成签到,获得积分10
刚刚
彭于晏应助Xuan采纳,获得10
刚刚
Orange应助友好的难敌采纳,获得10
1秒前
6666发布了新的文献求助10
1秒前
读懂文献就像喝水完成签到 ,获得积分10
1秒前
舒适清涟完成签到 ,获得积分10
1秒前
蒋瑞轩完成签到,获得积分10
2秒前
jkdajsk完成签到,获得积分10
2秒前
科研通AI5应助124cndhaP采纳,获得10
2秒前
yup发布了新的文献求助10
2秒前
Akim应助kkx采纳,获得10
2秒前
Owen应助kkx采纳,获得10
2秒前
传奇3应助晨屿采纳,获得10
2秒前
如意契完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
刘郑宇发布了新的文献求助30
4秒前
4秒前
王甜甜发布了新的文献求助50
4秒前
小核桃仁完成签到,获得积分10
5秒前
研友_VZG7GZ应助duduguai采纳,获得10
5秒前
多云转晴发布了新的文献求助10
5秒前
6秒前
失眠醉易应助张继科keke采纳,获得20
7秒前
7秒前
7秒前
zhendema完成签到,获得积分10
7秒前
8秒前
夏天发布了新的文献求助10
9秒前
李健的小迷弟应助xyh采纳,获得10
9秒前
Vlory完成签到 ,获得积分10
9秒前
赘婿应助zwz1015采纳,获得10
9秒前
Ankangg完成签到,获得积分10
10秒前
10秒前
LMM发布了新的文献求助10
10秒前
小晓完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907