Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Ford DrivAer Test Case Summary

空气动力学 汽车工业 计算流体力学 航空学 考试(生物学) 计算机科学 工程类 汽车工程 航空航天工程 可靠性工程 地质学 古生物学
作者
Burkhard Hupertz,Neil Lewington,Charles Mockett,Neil Ashton,Lian Duan
出处
期刊:SAE technical paper series 卷期号:1 被引量:9
标识
DOI:10.4271/2022-01-0886
摘要

<div class="section abstract"><div class="htmlview paragraph">The 2<sup>nd</sup> Automotive CFD Prediction workshop (AutoCFD2) was organized to improve the state-of-the-art in automotive aerodynamic prediction. It is the mission of the workshop organizing committee to drive the development and validation of enhanced CFD methods by establishing publicly available standard test cases for which high quality on- and off-body wind tunnel test data is available.</div><div class="htmlview paragraph">This paper reports on the AutoCFD2 workshop for the Ford DrivAer test case. Since its introduction, the DrivAer quickly became the quasi-standard for CFD method development and correlation. The Ford DrivAer has been chosen due to the proven, high-quality experimental data available, which includes integral aerodynamic forces, 209 surface pressures, 11 velocity profiles and 4 flow field planes. For the workshop, the notchback version of the DrivAer in a closed cooling, static floor test condition has been selected. For a better comparability of CFD results, two carefully designed control meshes were provided. Both meshes share identical distributions in the flow field volume but differ in near wall spacing to allow for wall-modelled and wall-resolved solutions.</div><div class="htmlview paragraph">The 65 results, which were submitted by 22 participants, revealed a very significant variability of the aerodynamic force predictions even when using the same turbulence model on the control grids. While individual simulations using scale-resolving hybrid turbulence models correlated very well to the experimental flow field data, other analyses using almost identical simulation approaches resulted in very different predictions. The comparison of transient versus steady state analysis confirmed that transient simulations deliver more accurate flow field predictions. A significant impact of the near wall mesh resolution could not be confirmed by the results submitted for the DrivAer test case.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff完成签到 ,获得积分10
刚刚
塔麻头完成签到,获得积分10
1秒前
Owen应助贝妮采纳,获得10
1秒前
大模型应助认真的梦竹采纳,获得10
1秒前
务实奎发布了新的文献求助10
2秒前
2秒前
bkagyin应助123456采纳,获得10
2秒前
阳光he发布了新的文献求助10
3秒前
火火发布了新的文献求助20
3秒前
Wangguagua完成签到 ,获得积分10
3秒前
4秒前
幸运鸡蛋灌饼完成签到 ,获得积分10
4秒前
wb完成签到 ,获得积分10
4秒前
小小完成签到,获得积分10
5秒前
5秒前
WANDour完成签到,获得积分10
6秒前
光轮2000完成签到 ,获得积分10
6秒前
喜肥发布了新的文献求助10
6秒前
NexusExplorer应助轻松狗采纳,获得10
6秒前
7秒前
可爱的函函应助橙100采纳,获得10
7秒前
梦XING发布了新的文献求助10
8秒前
石榴完成签到,获得积分10
8秒前
Jie发布了新的文献求助10
8秒前
塔麻头发布了新的文献求助10
9秒前
fan完成签到,获得积分10
9秒前
xiaowei发布了新的文献求助10
10秒前
11秒前
唠叨的觅松完成签到,获得积分10
13秒前
ydxhh发布了新的文献求助30
13秒前
852发布了新的文献求助10
13秒前
yyyy发布了新的文献求助20
13秒前
石榴发布了新的文献求助10
13秒前
14秒前
小二郎应助山大韩金龙采纳,获得10
14秒前
马晓玲发布了新的文献求助10
15秒前
15秒前
16秒前
内向秋寒完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057