Higher Education Management and Student Achievement Assessment Method Based on Clustering Algorithm

聚类分析 计算机科学 算法 人工智能 机器学习 数据挖掘
作者
Zhihui Wang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-10 被引量:12
标识
DOI:10.1155/2022/4703975
摘要

Monitoring and guiding instructional management require student performance evaluation. Traditional evaluation and analysis methods based on absolute scores, on the other hand, have certain flaws and are unable to fully reflect the information contained in student performance, thus limiting the impact of student performance evaluation on teaching and learning management. Data mining is regarded as the backbone technology for future information processing, and it introduces a new concept to the way humans use data. Schools must analyse and evaluate the performance of students in the same grade level and secondary school in a timely and staged manner. Clustering is a type of data mining that uses similarity rules to classify sample data into groups with a high degree of similarity. To address the difficulties caused by the wide variation in course difficulty in student performance evaluation, a method based on the K-means clustering algorithm is proposed. The K-means algorithm and the improved K-means algorithm with student information are investigated. The test results showed that the K-means clustering algorithm, the improved algorithm in this paper, and the fast global mean clustering algorithm all cluster the same randomly generated data set with noisy points, but the clustering time of the algorithm in this paper is only 0.04, which has obvious advantages. As a result, the clustering algorithm-based higher education management and student performance evaluation mechanism provides some insights for future research on student learning patterns. It is hoped that instructional administrators will gain a better understanding of students’ learning characteristics so that they can better guide their teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助yang采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
hellzhu完成签到,获得积分10
1秒前
王文静完成签到,获得积分10
1秒前
1秒前
关关过应助俏皮的以晴采纳,获得60
2秒前
2秒前
红枣发布了新的文献求助200
2秒前
烟花应助xh采纳,获得10
2秒前
科研通AI6应助偷马桶采纳,获得10
3秒前
科研通AI6应助He采纳,获得10
3秒前
科研通AI6应助自觉迎夏采纳,获得10
3秒前
3秒前
4秒前
dxl完成签到,获得积分10
4秒前
4秒前
bkagyin应助666采纳,获得10
4秒前
林东东发布了新的文献求助10
5秒前
5秒前
毛彬发布了新的文献求助20
5秒前
华仔应助caitSith采纳,获得10
5秒前
嘻哈发布了新的文献求助10
5秒前
丘比特应助欣欣紫采纳,获得10
5秒前
曾经耳机发布了新的文献求助10
6秒前
古月发布了新的文献求助10
6秒前
九玖给九玖的求助进行了留言
6秒前
6秒前
抽刀断水发布了新的文献求助10
6秒前
6秒前
Akim应助好名字采纳,获得10
6秒前
manba发布了新的文献求助10
6秒前
7秒前
7秒前
斯文尔芙发布了新的文献求助10
7秒前
7秒前
魔幻若血发布了新的文献求助10
7秒前
赘婿应助正直的西牛采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722