Crop pests and diseases recognition using DANet with TLDP

学习迁移 人工智能 计算机科学 卷积神经网络 深度学习 机器学习 模式识别(心理学) 领域(数学) 上下文图像分类 图像(数学) 数学 纯数学
作者
Shuli Xing,Hyo Jong Lee
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:199: 107144-107144 被引量:20
标识
DOI:10.1016/j.compag.2022.107144
摘要

• A more comprehensive image dataset of crop pests and diseases (CPD) was created. • Transfer learning based on the CPD image dataset (TLDP) was compared with ImageNet pre-training. • A novel Decoupling-and-Attention network was proposed to further improve the accuracy of TLDP. • DANet trained with the TLDP method achieved the highest classification accuracy on various open pest and disease. Pests and diseases are the two primary reasons for poor crop yields. Farmers have traditionally relied on manual methods to identify pests and diseases, which is time-consuming and costly. The Internet and pervasiveness of camera-enabled mobile devices, however, have made image acquisition more convenient and cheaper than ever before, and have launched a wave of research into how to use deep learning models to recognize pests and diseases in field. However, the datasets used in these studies were customized for only one or a few crop types. ImageNet pre-trained models were usually adopted to obtain high accuracy, regardless of the attributes of the target image datasets. A more comprehensive image dataset of crop pests and diseases was created. Transfer learning based on this disease and pest image dataset (TLDP) was compared with ImageNet pre-training. From experiments, we observed that TLDP has a similar effect to ImageNet pre-training. In addition, the performance of transfer learning largely depended on model performance on the source image dataset. To further improve the accuracy of TLDP, a novel convolutional neural network backbone called Decoupling-and-Attention network (DANet) was developed. DANet trained with the TLDP method achieved the highest classification accuracy on a strawberry pests and diseases image dataset (96.79%), followed by ImageNet pre-trained ResNet-50 (96.56%). In terms of computational cost, DANet was only a quarter of ResNet-50. The pre-trained DANet was also tested on other open pests and diseases image datasets. It still shows comparable performance to ImageNet pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jae关闭了Jae文献求助
刚刚
脑洞疼应助Gracie采纳,获得10
1秒前
万松辉完成签到,获得积分10
2秒前
2秒前
Lin完成签到,获得积分10
2秒前
hanzhipad应助shasha采纳,获得20
3秒前
3秒前
CodeCraft应助Jane采纳,获得10
3秒前
4秒前
David发布了新的文献求助10
4秒前
Kahanto发布了新的文献求助10
5秒前
8秒前
8秒前
小星星完成签到 ,获得积分10
10秒前
河狸完成签到 ,获得积分10
11秒前
李爱国应助fj采纳,获得10
14秒前
14秒前
15秒前
sususu完成签到,获得积分20
15秒前
李先生完成签到 ,获得积分10
16秒前
11发布了新的文献求助10
16秒前
Owen应助nnbn采纳,获得10
16秒前
科研通AI5应助zhanlang采纳,获得10
19秒前
19秒前
19秒前
19秒前
米饭辣椒发布了新的文献求助10
20秒前
威威完成签到,获得积分10
20秒前
李先生关注了科研通微信公众号
21秒前
22秒前
23秒前
zhouzhou发布了新的文献求助10
23秒前
hhhhh发布了新的文献求助10
24秒前
明理怜烟完成签到 ,获得积分20
24秒前
苏尔琳诺完成签到,获得积分10
25秒前
25秒前
27秒前
稳重的青旋完成签到,获得积分10
27秒前
细雨听风发布了新的文献求助10
27秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Oxford Handbook of Video Game Music and Sound 200
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826252
求助须知:如何正确求助?哪些是违规求助? 3368664
关于积分的说明 10451634
捐赠科研通 3088000
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770084