Comparative study of neural network damage detection from a statistical set of electro-mechanical impedance spectra

人工神经网络 计算机科学 模式识别(心理学) 概率神经网络 水准点(测量) 人工智能 特征向量 特征提取 概率逻辑 统计模型 支持向量机 集合(抽象数据类型) 时滞神经网络 大地测量学 程序设计语言 地理
作者
Victor Giurgiutiu,Claudia V. Kropas-Hughes
出处
期刊:Proceedings of SPIE 卷期号:5047: 108-108 被引量:24
标识
DOI:10.1117/12.484050
摘要

The detection of structural damage from the high-frequency local impedance spectra is addressed with a spectral classification approach consisting of features extraction followed by probabilistic neural network pattern recognition. The paper starts with a review of the neural network principles, followed by a presentation of the state of the art in the use of pattern recognition methods for damage detection. The construction and experimentation of a controlled experiment for determining benchmark spectral data with know amounts of damage and inherent statistical variation is presented. Spectra were collected in the 10-40 kHz, 10-150 kHz, and 300-450 kHz for 5 damage situations, each situation containing 5 members, "identical", but slightly different. A features extraction algorithm was used to determine the resonance frequencies and amplitudes contained in these high-frequency spectra. The feature vectors were used as input to a probabilistic neural network. The training was attained using one randomly selected member from each of the 5 damage classes, while the validation was performed on all the remaining members. When features vector had a small size, some misclassifications were observed. Upon increasing the size of the features vector, excellent classification was attained in all cases. Directions for further studies include the study of other frequency bands and different neural network algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘婉敏完成签到 ,获得积分10
1秒前
lyk2815完成签到,获得积分10
2秒前
healer发布了新的文献求助10
3秒前
HarbinDing完成签到,获得积分10
3秒前
科研通AI6应助何文采纳,获得100
4秒前
霍夫斯泰德完成签到,获得积分10
4秒前
6秒前
6秒前
无私的糖豆完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
黎书禾完成签到,获得积分10
8秒前
Ceaser完成签到,获得积分10
9秒前
李爱国应助吉良吉影采纳,获得10
11秒前
Pretrial完成签到 ,获得积分10
11秒前
12秒前
Om完成签到,获得积分10
12秒前
wendy发布了新的文献求助10
13秒前
nuonuo发布了新的文献求助10
13秒前
我是老大应助独特凌萱采纳,获得10
13秒前
xlxlxl发布了新的文献求助10
14秒前
14秒前
安卡发布了新的文献求助10
16秒前
毕业比耶完成签到,获得积分10
16秒前
Zzz发布了新的文献求助10
17秒前
17秒前
科研通AI6应助大芳儿采纳,获得10
19秒前
慕青应助田七采纳,获得10
20秒前
深情安青应助石头采纳,获得10
20秒前
Owen应助RC_Wang采纳,获得10
22秒前
Yolo完成签到,获得积分10
22秒前
asd_1发布了新的文献求助10
22秒前
chris完成签到,获得积分10
23秒前
xlxlxl完成签到,获得积分20
24秒前
深情安青应助cyw采纳,获得10
25秒前
怡然的涔完成签到,获得积分10
25秒前
Shan5给Shan5的求助进行了留言
28秒前
bkagyin应助白白采纳,获得30
28秒前
Twonej应助突突突然悟了采纳,获得30
30秒前
迷你的怀绿完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858