材料科学
光电子学
聚合物
费斯特共振能量转移
能量转移
太阳能
聚合物太阳能电池
异质结
共振(粒子物理)
有机太阳能电池
光学
工程物理
物理
太阳能电池
原子物理学
复合材料
生态学
荧光
生物
作者
Jing‐Shun Huang,Tenghooi Goh,Xiaokai Li,Matthew Y. Sfeir,Elizabeth A. Bielinski,Stephanie Tomasulo,Minjoo Larry Lee,Nilay Hazari,André D. Taylor
出处
期刊:Nature Photonics
[Nature Portfolio]
日期:2013-05-03
卷期号:7 (6): 479-485
被引量:408
标识
DOI:10.1038/nphoton.2013.82
摘要
There are two crucial tasks for realizing high-efficiency polymer solar cells (PSCs): increasing the range of the spectral absorption of light and efficiently harvesting photogenerated excitons. Here, we describe Forster resonance energy transfer-based heterojunction polymer solar cells that incorporate squaraine dye. The high absorbance of squaraine in the near-infrared region broadens the spectral absorption of the solar cells and assists in developing an ordered nanomorphology for enhanced charge transport. Femtosecond spectroscopic studies reveal highly efficient (up to 96%) excitation energy transfer from poly(3-hexylthiophene) to squaraine occurring on a picosecond timescale. We demonstrate a 38% increase in power conversion efficiency to reach 4.5%, and suggest that this system has improved exciton migration over long distances. This architecture transcends traditional multiblend systems, allowing multiple donor materials with separate spectral responses to work synergistically, thereby enabling an improvement in light absorption and conversion. This opens up a new avenue for the development of high-efficiency polymer solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI