Embedded Coaxial Bioprinting of Vascularized Tissue Models for Drug Evaluation

体内 生物医学工程 脐静脉 材料科学 旁分泌信号 药品 组织工程 药物输送 癌症研究 芯片上器官 细胞 脚手架 埃罗替尼 肺癌 细胞外基质 血管 细胞生物学 生物加工 细胞培养 间充质干细胞 癌细胞 肿瘤微环境 血管生成
作者
Jia-run Sun,Youping Gong,Yuchen He,Jianwei Cui,Haifeng Chen,Nanyan Kang,Yixie Wu,Jiahao Hui,Huipeng Chen,Rougang Zhou,Huifeng Shao,Ying Yu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202520097
摘要

Abstract Vascularized tissue models represent a pivotal approach for enhancing the accuracy of clinical drug prediction by recapitulating the in vivo microenvironment. However, replicating the structural complexity, functional integration, and long‐term stability inherent in native vascular tissues remains a significant challenge within the tissue engineering field. Herein, a novel strategy employing aqueous‐embedded coaxial bioprinting is proposed. By optimizing the rheological compatibility between alginate‐collagen (Alg‐Col) bioink and xanthan gum‐collagen (XG‐Col) support bath, the high‐fidelity and efficient fabrication of vascularized tissue models is achieved. Utilizing a triaxial nozzle, synchronous deposition of a bilayered vascular construct containing human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (HLFs) is performed directly within a tumor cell (human lung adenocarcinoma PC‐9 cell line)‐laden support bath, resulting in the construction of a perfusable vascularized lung cancer tissue model. Drug assessment revealed significantly lower sensitivity of PC‐9 cells to erlotinib within the 3D vascularized model compared to controls. In addition to the physical barrier effect, the vascularized microenvironment activated cancer cell survival pathways primarily through paracrine signaling from endothelial cells and fibroblasts. Gene expression analysis further demonstrated the induction of epithelial‐mesenchymal transition (EMT) in the vascularized model. This integrated platform more accurately recapitulates in vivo drug diffusion kinetics and resistance mechanisms, thereby providing an innovative preclinical platform for enhanced anticancer drug screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助leehhd采纳,获得30
1秒前
咸鱼中下游完成签到,获得积分10
1秒前
香酥板栗完成签到,获得积分10
2秒前
Kenny完成签到,获得积分10
2秒前
3秒前
聪明的绮波完成签到 ,获得积分10
3秒前
科目三应助笔墨留香采纳,获得10
4秒前
cen完成签到,获得积分10
4秒前
彭于晏应助Na采纳,获得10
5秒前
7秒前
轻松幼南完成签到 ,获得积分10
8秒前
憨憨的小于完成签到,获得积分10
8秒前
领导范儿应助gao采纳,获得10
8秒前
KK完成签到,获得积分10
8秒前
酷波er应助严格采纳,获得10
9秒前
10秒前
10秒前
10秒前
大模型应助秋子骞采纳,获得10
11秒前
11秒前
Youth发布了新的文献求助10
11秒前
11秒前
咪咪大王统治世界完成签到,获得积分10
12秒前
12秒前
13秒前
momomiao完成签到,获得积分10
13秒前
You完成签到,获得积分10
13秒前
传奇3应助甲乙丙丁采纳,获得10
13秒前
糟糕的赛君完成签到,获得积分20
14秒前
jiner完成签到,获得积分10
14秒前
小杭76应助little采纳,获得10
14秒前
小小小小小的骨头完成签到,获得积分20
14秒前
chengxiping发布了新的文献求助10
14秒前
Serendipity发布了新的文献求助10
15秒前
金玉发布了新的文献求助10
16秒前
17秒前
XJ发布了新的文献求助10
17秒前
17秒前
笔墨留香发布了新的文献求助10
17秒前
曾诗婷完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297021
求助须知:如何正确求助?哪些是违规求助? 4446041
关于积分的说明 13838182
捐赠科研通 4331101
什么是DOI,文献DOI怎么找? 2377446
邀请新用户注册赠送积分活动 1372686
关于科研通互助平台的介绍 1338278