Digital Twin Catalog: A Large-Scale Photorealistic 3D Object Digital Twin Dataset

作者
Zhao Dong,Ka Chen,Zhaoyang Lv,Hong-Xing Yu,Yunzhi Zhang,Cheng Zhang,Yufeng Zhu,Stephen Tian,Zhengqin Li,Geordie Moffatt,Sean Christofferson,James A. Fort,Xiaqing Pan,Mingfei Yan,Jiajun Wu,Carl Yuheng Ren,Richard Newcombe
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2504.08541
摘要

We introduce the Digital Twin Catalog (DTC), a new large-scale photorealistic 3D object digital twin dataset. A digital twin of a 3D object is a highly detailed, virtually indistinguishable representation of a physical object, accurately capturing its shape, appearance, physical properties, and other attributes. Recent advances in neural-based 3D reconstruction and inverse rendering have significantly improved the quality of 3D object reconstruction. Despite these advancements, there remains a lack of a large-scale, digital twin-quality real-world dataset and benchmark that can quantitatively assess and compare the performance of different reconstruction methods, as well as improve reconstruction quality through training or fine-tuning. Moreover, to democratize 3D digital twin creation, it is essential to integrate creation techniques with next-generation egocentric computing platforms, such as AR glasses. Currently, there is no dataset available to evaluate 3D object reconstruction using egocentric captured images. To address these gaps, the DTC dataset features 2,000 scanned digital twin-quality 3D objects, along with image sequences captured under different lighting conditions using DSLR cameras and egocentric AR glasses. This dataset establishes the first comprehensive real-world evaluation benchmark for 3D digital twin creation tasks, offering a robust foundation for comparing and improving existing reconstruction methods. The DTC dataset is already released at https://www.projectaria.com/datasets/dtc/ and we will also make the baseline evaluations open-source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
老登发布了新的文献求助10
1秒前
22发布了新的文献求助30
4秒前
彭于晏应助桃子采纳,获得10
5秒前
欧欧完成签到 ,获得积分10
6秒前
xlll完成签到,获得积分10
9秒前
yuliuism完成签到,获得积分10
12秒前
14秒前
Tinweng完成签到 ,获得积分10
14秒前
活力的驳发布了新的文献求助10
14秒前
疯狂的书竹完成签到,获得积分10
15秒前
HK完成签到,获得积分10
16秒前
Flllllll完成签到,获得积分10
17秒前
犹豫的夏旋完成签到 ,获得积分10
17秒前
xxchang发布了新的文献求助10
19秒前
19秒前
dyk完成签到,获得积分10
22秒前
fjg完成签到,获得积分10
22秒前
阿龙完成签到,获得积分10
23秒前
777发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
27秒前
seashell发布了新的文献求助10
28秒前
活力的驳完成签到,获得积分20
28秒前
大模型应助吴未采纳,获得10
30秒前
苗条平萱完成签到,获得积分10
30秒前
32秒前
阿尔芒果皮完成签到 ,获得积分10
32秒前
xxchang完成签到,获得积分20
32秒前
英俊的铭应助seashell采纳,获得10
33秒前
竹筏过海应助letitiazeng采纳,获得50
34秒前
34秒前
勤奋乐天完成签到,获得积分10
35秒前
LI完成签到,获得积分10
35秒前
垚垚垚完成签到 ,获得积分10
35秒前
藿香ZQ水完成签到 ,获得积分10
36秒前
於依白发布了新的文献求助10
36秒前
36秒前
惊鸿一面发布了新的文献求助30
37秒前
大模型应助活力的驳采纳,获得30
38秒前
糊涂的惠发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517752
求助须知:如何正确求助?哪些是违规求助? 4610485
关于积分的说明 14522487
捐赠科研通 4547661
什么是DOI,文献DOI怎么找? 2491776
邀请新用户注册赠送积分活动 1473325
关于科研通互助平台的介绍 1445191