EXPRESS: Reducing Hospital Procurement Costs through Vendor Contract Optimization: A Decision-Support Framework for GPOs

采购 小贩 业务 运营管理 决策支持系统 合同管理 运筹学 计算机科学 营销 经济 工程类 人工智能
作者
Wei Yang,David D. Dobrzykowski,Haitao Li,William A. Ellegood
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251390103
摘要

Group Purchasing Organizations (GPOs) play a crucial intermediary role in the U.S. healthcare supply chain by consolidating purchasing power across multiple healthcare providers. However, increasing competition from peer organizations and hospitals’ insourcing efforts has placed significant pressure on GPOs to enhance their value propositions. This study presents a data-driven framework designed to help GPOs reduce medical supply costs for hospitals by addressing inefficiencies in vendor tier contracts, a complex form of quantity discount based on market share rather than absolute quantity. The framework consists of reference matrices that define feasible adjustment spaces for tier prices and thresholds, followed by mixed-integer programming models designed to optimize contract parameters. It enables GPOs to (1) identify misalignments between vendor contracts and hospital operational realities, (2) guide vendors in improving their tier contracts to lower procurement costs for hospitals while supporting their own financial interests, and (3) evaluate the potential for tailoring contracts to individual health systems within existing tier structures to achieve additional savings. Applied to four health systems within a Midwest-based GPO, the model demonstrates up to 50% potential savings compared to current IDN spend and 14% savings relative to the optimal spend under existing tier thresholds. In addition, while prior studies suggest hospital-direct contracts fail to deliver net savings due to high transaction costs, our research shows that some hospitals could potentially benefit from GPO-managed custom contracts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123654发布了新的文献求助10
刚刚
zyx发布了新的文献求助10
刚刚
1秒前
MAVS发布了新的文献求助80
3秒前
11发布了新的文献求助10
4秒前
Hollow完成签到,获得积分10
4秒前
铁豆关注了科研通微信公众号
4秒前
JamesPei应助幼稚园扛把子采纳,获得10
4秒前
朱11完成签到,获得积分10
6秒前
6秒前
llll应助愚者先生采纳,获得10
6秒前
7秒前
7秒前
陈chen发布了新的文献求助10
9秒前
9秒前
研究啥完成签到,获得积分10
9秒前
肥鹤发布了新的文献求助20
10秒前
10秒前
10秒前
冰糖橙子完成签到,获得积分10
11秒前
westernline完成签到,获得积分10
11秒前
张贵川发布了新的文献求助10
11秒前
12秒前
朱11发布了新的文献求助10
15秒前
阿萨芣发布了新的文献求助10
15秒前
16秒前
小6完成签到,获得积分10
17秒前
XIAONAN完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
搜集达人应助肥鹤采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
铁豆发布了新的文献求助10
22秒前
23秒前
23秒前
共享精神应助虚幻德地采纳,获得20
23秒前
24秒前
bkagyin应助wkjfh采纳,获得20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849737
求助须知:如何正确求助?哪些是违规求助? 4149147
关于积分的说明 12852449
捐赠科研通 3896416
什么是DOI,文献DOI怎么找? 2141672
邀请新用户注册赠送积分活动 1161179
关于科研通互助平台的介绍 1061248