材料科学
热电效应
范德瓦尔斯力
晶界
纳米技术
化学物理
密度泛函理论
微尺度化学
各向异性
热电材料
微观结构
热导率
分子
复合材料
计算化学
热力学
物理
数学教育
量子力学
化学
数学
作者
Zefan Xue,Xiege Huang,Weixiao Lin,Wenjun Cui,Zhi Yang,Wen Zhao,Congli Sun,Guodong Li,Gustaaf Van Tendeloo,Xiahan Sang
标识
DOI:10.1002/adma.202510614
摘要
Abstract Thermoelectric nanoplates derived from anisotropic van der Waals (vdW) materials such as Bi 2 Te 3 are pivotal for flexible electronics and microscale thermal management. Their performance critically depends on grain boundary (GB) microstructure, but the atomic‐scale mechanisms governing grain growth in these highly anisotropic systems remain elusive. This particularly concerns the competition between individual nanoplate reshaping driven by facet stabilization and collective merging at GBs. Integrating in situ scanning transmission electron microscopy (STEM), density functional theory (DFT), and molecular dynamics (MD) simulations, these competing pathways in pure Bi 2 Te 3 (BT) and Sb‐doped (BST) systems are unraveled. Undoped BT nanoplates preferentially undergo atomically localized reshaping, with atoms migrating from high‐energy edges to stabilize low‐energy facets. Conversely, Sb doping introduces Sb‐Te interfacial phases that thermodynamically favor GB coalescence, thereby shifting the dominant pathway to collective merging. This work reveals how chemical modification steers GB evolution, determining whether reshaping or merging predominates. Such understanding is crucial for rationally designing anisotropic layered materials for applications in flexible electronics, topological materials, and energy‐efficient devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI