Rice leaf disease identification by residual-distilled transformer

计算机科学 残余物 可解释性 变压器 人工智能 多层感知器 机器学习 模式识别(心理学) 人工神经网络 算法 电气工程 电压 工程类
作者
Changjian Zhou,Yujie Zhong,Sihan Zhou,Jia Song,Wensheng Xiang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 106020-106020 被引量:7
标识
DOI:10.1016/j.engappai.2023.106020
摘要

As the worldwide planting crop, rice feeds nearly half of the world’s population. However, the continuous spread of diseases is threatening rice production. It is of great practical value to identify rice diseases precisely. Recent studies suggest that the computational approaches provide an opportunity for rice leaf disease prediction and achieve a series of achievements. However, the existing works for rice leaf disease identification are still unsatisfactory either in identification accuracy or model interpretability. To address these limitations, a residual-distilled transformer architecture is proposed in this study. Inspired by the early success of transformers in computer vision, the distillation strategy is introduced to distill weights and parameters from the pre-trained vision transformer models. The residual concatenation between vision transformer and the distilled transformer are as residual blocks for features extraction, and then fed them into multi-layer perceptron (MLP) for prediction. Experimental results demonstrate that the presented method achieves 0.89 F1-score and 0.92 top-1 accuracy, outperforms the existing state-of-the-art models on the rice leaf disease dataset which collected in paddy fields. In addition, the proposed architecture provides model interpretability to grasp the key features that are significant for positive prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
SSS发布了新的文献求助10
3秒前
violet完成签到,获得积分10
3秒前
x1完成签到,获得积分10
3秒前
5秒前
zzy发布了新的文献求助10
5秒前
6秒前
ximei发布了新的文献求助10
7秒前
Dylan发布了新的文献求助10
7秒前
华仔应助ideal采纳,获得10
8秒前
8秒前
9秒前
10秒前
夏日发布了新的文献求助10
10秒前
隐形曼青应助VanillaTwilight采纳,获得10
10秒前
vlots应助复杂的白秋采纳,获得30
13秒前
14秒前
烟花应助书记采纳,获得10
14秒前
英姑应助知了采纳,获得10
14秒前
天真琳完成签到 ,获得积分10
14秒前
Harish完成签到,获得积分10
15秒前
orixero应助安彩青采纳,获得10
15秒前
16秒前
卡顿公开发布了新的文献求助10
16秒前
复杂的友琴完成签到,获得积分20
17秒前
天天完成签到,获得积分10
18秒前
淡淡十三完成签到,获得积分10
19秒前
ximei完成签到,获得积分10
20秒前
22秒前
22秒前
1351567822应助呼呼兔采纳,获得10
23秒前
海与猫完成签到 ,获得积分10
23秒前
mumu完成签到,获得积分10
24秒前
25秒前
朴实的忆秋完成签到,获得积分10
25秒前
25秒前
SYLH应助YF采纳,获得20
27秒前
结实天川发布了新的文献求助20
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041136
求助须知:如何正确求助?哪些是违规求助? 3578561
关于积分的说明 11380135
捐赠科研通 3307482
什么是DOI,文献DOI怎么找? 1820035
邀请新用户注册赠送积分活动 893183
科研通“疑难数据库(出版商)”最低求助积分说明 815390