亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Multiobjective Evolutionary Generative Adversarial Network for Metaverse Network Intrusion Detection

对抗制 生成语法 计算机科学 生成对抗网络 入侵 人工智能 机器学习 深度学习 地质学 地球化学
作者
Dikai Xu,Bin Cao
出处
期刊:Research [AAAS00]
标识
DOI:10.34133/research.0665
摘要

The convergence of the Metaverse and the Internet of Things (IoT) paves the way for extensive data interaction between connected devices and digital twins; however, this simultaneously introduces considerable cybersecurity threats, including data breaches, ransomware, and device tampering. Existing intrusion detection algorithms struggle to effectively defend against emerging cyberattacks in the rapidly evolving Metaverse environment. Designing effective neural networks for intrusion detection algorithms relies heavily on expert experience, making the manual process time-consuming and often yielding suboptimal results. This paper addresses a critical gap in cybersecurity for Metaverse devices, which are often overlooked in traditional detection methods, and proposes an adaptive multiobjective evolutionary generative adversarial network (AME-GAN) as a novel, scalable solution for optimizing network intrusion detection. An inversely proportional hybrid attention-based long short-term memory GAN is proposed, combining GANs to generate minority class samples and alleviate the imbalance problem in training datasets, which has long hindered accurate intrusion detection. Additionally, an adaptive evolutionary neural architecture search algorithm for the supernet of the GAN is designed to guide the mutation direction of the supernet, enhancing the training stability. This paper further introduces a double mutation multiobjective evolutionary neural architecture search algorithm, integrating both the multiobjective evolutionary algorithm and the neural architecture search to optimize accuracy, real-time performance, and model diversity-a crucial aspect for Metaverse devices with diverse hardware constraints. Experiments conducted on 3 well-known datasets-NSL-KDD, UNSW-NB15, and CIC-IDS2017-demonstrate that AME-GAN outperforms state-of-the-art approaches, with improvements of 0.32% in accuracy, 0.31% in F1 score, 0.47% in precision, and 0.37% in recall. This paper offers a promising, adaptive framework to enhance cybersecurity in the Metaverse, improving detection performance and real-time applicability, and contributing to the future of network intrusion detection in next-generation digital environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yulanda完成签到 ,获得积分10
6秒前
完美世界应助zym采纳,获得10
23秒前
俟天晴完成签到,获得积分10
29秒前
xiw完成签到,获得积分10
31秒前
meow完成签到 ,获得积分10
47秒前
Catfish完成签到,获得积分10
52秒前
cen完成签到,获得积分10
1分钟前
1分钟前
彭于晏应助Drwld采纳,获得10
1分钟前
烟花应助橘猫采纳,获得10
1分钟前
懒洋洋发布了新的文献求助10
1分钟前
Ronalsen完成签到 ,获得积分10
1分钟前
互助应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助学术垃圾采纳,获得10
1分钟前
斯利美尔发布了新的文献求助10
2分钟前
susu发布了新的文献求助10
2分钟前
2分钟前
学术垃圾发布了新的文献求助10
2分钟前
InsanityK发布了新的文献求助30
2分钟前
斯利美尔完成签到,获得积分10
2分钟前
和气生财君完成签到 ,获得积分10
2分钟前
sunny完成签到 ,获得积分10
2分钟前
orixero应助高源伯采纳,获得10
3分钟前
3分钟前
3分钟前
合适寄松发布了新的文献求助20
3分钟前
大yo知闲闲完成签到 ,获得积分10
3分钟前
高源伯发布了新的文献求助10
3分钟前
财路通八方完成签到 ,获得积分10
3分钟前
昔黎完成签到 ,获得积分10
3分钟前
maprang完成签到,获得积分10
3分钟前
3分钟前
shaylie完成签到 ,获得积分10
3分钟前
zzz发布了新的文献求助10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880437
求助须知:如何正确求助?哪些是违规求助? 6572351
关于积分的说明 15689876
捐赠科研通 5000124
什么是DOI,文献DOI怎么找? 2694209
邀请新用户注册赠送积分活动 1636018
关于科研通互助平台的介绍 1593447