Adaptive Multiobjective Evolutionary Generative Adversarial Network for Metaverse Network Intrusion Detection

对抗制 生成语法 计算机科学 生成对抗网络 入侵 人工智能 机器学习 深度学习 地质学 地球化学
作者
Dikai Xu,Bin Cao
出处
期刊:Research [American Association for the Advancement of Science]
标识
DOI:10.34133/research.0665
摘要

The convergence of the Metaverse and the Internet of Things (IoT) paves the way for extensive data interaction between connected devices and digital twins; however, this simultaneously introduces considerable cybersecurity threats, including data breaches, ransomware, and device tampering. Existing intrusion detection algorithms struggle to effectively defend against emerging cyberattacks in the rapidly evolving Metaverse environment. Designing effective neural networks for intrusion detection algorithms relies heavily on expert experience, making the manual process time-consuming and often yielding suboptimal results. This paper addresses a critical gap in cybersecurity for Metaverse devices, which are often overlooked in traditional detection methods, and proposes an adaptive multiobjective evolutionary generative adversarial network (AME-GAN) as a novel, scalable solution for optimizing network intrusion detection. An inversely proportional hybrid attention-based long short-term memory GAN is proposed, combining GANs to generate minority class samples and alleviate the imbalance problem in training datasets, which has long hindered accurate intrusion detection. Additionally, an adaptive evolutionary neural architecture search algorithm for the supernet of the GAN is designed to guide the mutation direction of the supernet, enhancing the training stability. This paper further introduces a double mutation multiobjective evolutionary neural architecture search algorithm, integrating both the multiobjective evolutionary algorithm and the neural architecture search to optimize accuracy, real-time performance, and model diversity-a crucial aspect for Metaverse devices with diverse hardware constraints. Experiments conducted on 3 well-known datasets-NSL-KDD, UNSW-NB15, and CIC-IDS2017-demonstrate that AME-GAN outperforms state-of-the-art approaches, with improvements of 0.32% in accuracy, 0.31% in F1 score, 0.47% in precision, and 0.37% in recall. This paper offers a promising, adaptive framework to enhance cybersecurity in the Metaverse, improving detection performance and real-time applicability, and contributing to the future of network intrusion detection in next-generation digital environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能的小叮当完成签到,获得积分0
2秒前
缘分完成签到,获得积分10
2秒前
研时友完成签到,获得积分10
2秒前
悦耳的芷珊完成签到,获得积分10
3秒前
PSA发布了新的文献求助10
4秒前
AJ完成签到 ,获得积分10
5秒前
xh发布了新的文献求助10
5秒前
fei菲飞完成签到,获得积分10
6秒前
Chong完成签到,获得积分10
7秒前
PeilingLiu完成签到 ,获得积分10
9秒前
索李拉俊完成签到,获得积分10
10秒前
xh完成签到,获得积分20
12秒前
乔杰完成签到 ,获得积分10
13秒前
lin完成签到,获得积分10
14秒前
研究生完成签到 ,获得积分10
15秒前
solosad发布了新的文献求助150
16秒前
英姑应助索李拉俊采纳,获得10
20秒前
00完成签到 ,获得积分10
21秒前
柠檬完成签到 ,获得积分10
22秒前
fire完成签到 ,获得积分10
24秒前
27秒前
超级小飞侠完成签到 ,获得积分10
27秒前
花花521完成签到,获得积分10
29秒前
百地希留耶完成签到 ,获得积分10
31秒前
zhangruiii完成签到,获得积分10
35秒前
39秒前
迅速灵竹完成签到 ,获得积分10
41秒前
浩气长存完成签到 ,获得积分10
42秒前
orixero应助科研通管家采纳,获得10
43秒前
思源应助科研通管家采纳,获得10
44秒前
Jasper应助科研通管家采纳,获得10
44秒前
科研小郭完成签到,获得积分10
45秒前
hansa完成签到,获得积分0
45秒前
子苓完成签到 ,获得积分10
47秒前
cocopepsi完成签到,获得积分10
49秒前
缥缈的冰旋完成签到,获得积分10
49秒前
c123完成签到 ,获得积分10
49秒前
52秒前
慧海拾穗完成签到 ,获得积分10
52秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811753
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379217
捐赠科研通 3072975
什么是DOI,文献DOI怎么找? 1688180
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893