作者
M. Chen,Junhao Pan,Yang Song,Shenao Liu,Peng Sun,Xin Zheng
摘要
Fecal microbial transplantation (FMT) is an important technology for treating diarrhea and enteritis. Additionally, FMT has been applied to improve productivity, alter abnormal behavior, relieve stress, and reduce burdens. However, some previous studies have reported that FMT may cause stress in acceptor animals. Inulin, a prebiotic, can promote growth, enhance immunity, and balance the gut microbiota. Currently, there are limited reports on the effects of combining FMT with inulin on early growth performance in chicks. In this study, a total of 90 1-day-old chicks were randomly divided into the control group (CON), FMT group, and inulin group (INU). The CON group was fed a basic diet, whereas the FMT and INU groups received fecal microbiota transplantation and FMT with inulin treatment, respectively. Compared with the FMT and CON groups, the INU group presented significantly greater average daily gain (ADG) and average daily feed intake (ADFI) values (P < 0.05). However, the organ indices did not significantly change (P > 0.05). The ratio of the villi to crypts in the ileum significantly differed at 21 and 35 days (P < 0.05). In addition, the cecum concentrations of acetic acid and butyric acid significantly increased in the INU group (P < 0.05). In addition, gut inflammation and serum inflammation decreased in the INU group, and immune factors increased after inulin supplementation. (P < 0.05). Firmicutes and Bacteroidetes were the dominant phyla, with more than 90% of all sequences being identified as originating from these two phyla. Inulin supplementation during mother-sourced microbial transplantation significantly increased the abundance of Rikenella, Butyricicoccus, and [Ruminococcus], which contributed positively to the promotion of early intestinal health and facilitated the early growth of chicks. The results of this study suggest that inulin supplementation in maternal fecal microbiota transplantation can effectively promote early growth and probiotic colonization, which favors the health of chicks. Video Abstract.