Differential privacy scheme using Laplace mechanism and statistical method computation in deep neural network for privacy preservation

计算机科学 差别隐私 范畴变量 人工神经网络 数据挖掘 计算 拉普拉斯分布 个人可识别信息 算法 人工智能 拉普拉斯变换 机器学习 计算机安全 数学 数学分析
作者
G. Sathish Kumar,K. Premalatha,G. Uma Maheshwari,P. Rajesh Kanna,G. Vijaya,M. Nivaashini
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107399-107399 被引量:32
标识
DOI:10.1016/j.engappai.2023.107399
摘要

Mountainous amounts of information are now available in hospitals, finance, counter-terrorism, education and many other sectors. Those information can offer a rich source for analysis and decision making. Such information contains user's sensitive and personal data as well. This emanates direct conflict with the user's privacy. Individual's privacy is their right. The existing privacy preserving algorithms works mainly on the numerical data and doesn't care about the categorical data. In addition, there is a heavy trade-off between privacy preservation and data utility. To overcome these issues, a deep neural network - statistical differential privacy (DNN−SDP) algorithm is proposed as the solution to disguise the individual's private and sensitive data. Both the numerical and categorical based human-specific data are considered and fed to the input layer of the neural network. The statistical methods weight of evidence and information value is applied in the hidden layer along with the random weight (wi) to get the initial perturbed data. This initially perturbed data is taken by Laplace computation based differential privacy mechanism as the input and provides the final perturbed data. Census income, bank marketing and heart disease datasets are used for experimentation. While comparing with the state-of-the-art methods, DNN−SDP algorithm provides 97.4% of accuracy with 98.2% of precision, 99% of recall rate and 98.7% of F-measure value. In addition, the fall-out rate, miss rate and false omission rate of the proposed algorithm are less than 4.1%. The DNN−SDP algorithm guarantees the privacy preservation along with data utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxxllllll发布了新的文献求助10
1秒前
林霖完成签到 ,获得积分10
1秒前
2秒前
子名起难发布了新的文献求助10
2秒前
yw完成签到,获得积分10
2秒前
小马甲应助林松采纳,获得10
3秒前
cesin发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Criminology34应助小泉采纳,获得30
5秒前
5秒前
ZZY发布了新的文献求助10
6秒前
6秒前
星辰大海应助叶子采纳,获得30
6秒前
CZhen完成签到,获得积分10
7秒前
Ni应助Peterpk采纳,获得10
7秒前
寻光人完成签到,获得积分10
8秒前
8秒前
9秒前
华仔应助ll200207采纳,获得10
9秒前
阳光的三问完成签到,获得积分10
10秒前
xs完成签到,获得积分10
10秒前
12秒前
yyds发布了新的文献求助20
12秒前
12秒前
14秒前
猴哥发布了新的文献求助10
15秒前
15秒前
huaixi完成签到,获得积分10
15秒前
111完成签到 ,获得积分10
15秒前
林松发布了新的文献求助10
15秒前
宋文娟完成签到,获得积分10
16秒前
16秒前
忌辛辣发布了新的文献求助100
16秒前
JamesPei应助舒心的初露采纳,获得10
16秒前
miao关注了科研通微信公众号
16秒前
肖婷发布了新的文献求助10
17秒前
17秒前
潼络发布了新的文献求助10
17秒前
Anany完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086737
求助须知:如何正确求助?哪些是违规求助? 4302291
关于积分的说明 13407338
捐赠科研通 4127543
什么是DOI,文献DOI怎么找? 2260384
邀请新用户注册赠送积分活动 1264596
关于科研通互助平台的介绍 1198810