已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning and deep learning-based anomaly detection for electric vehicle charging infrastructure and industrial internet of things

异常检测 可解释性 稳健性(进化) 计算机科学 人工智能 机器学习 支持向量机 信息物理系统 深度学习 分布式计算 生物化学 基因 操作系统 化学
作者
Sai Chandana Vallam Kondu
标识
DOI:10.31274/td-20240617-187
摘要

In the evolving landscape of cyber-physical systems (CPS), such as Electric Vehicle Charging Stations (EVCS) and the Industrial Internet of Things (IIoT), the convergence of cyber and physical domains introduces a myriad of opportunities for enhanced efficiency and connectivity. However, this integration also presents substantial security challenges, with vulnerabilities posing risks to both cyber operations and physical system functionality. Anomalies, indicative of cyber-attacks or system malfunctions, manifest as deviations from established operational norms, necessitating sophisticated detection mechanisms. This thesis presents a comprehensive investigation into the application of machine learning (ML) and deep learning (DL) algorithms for anomaly detection within these critical CPS frameworks, emphasizing IIoT and EVCS systems. Acknowledging the inherent complexity of these systems, the research initially applies a suite of ML algorithms—Support Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF)—to IIoT systems, exploiting the relatively straightforward operational patterns to establish a foundational anomaly detection framework. This strategic application leverages the diverse strengths of each algorithm: SVM's capacity for handling high-dimensional data, DT's interpretability and ease of use, and RF's robustness and accuracy in classification tasks. Subsequently, the thesis escalates the analytical depth by incorporating Long Short-Term Memory (LSTM) networks, a DL-based technique, to navigate the more intricate anomaly detection challenges encountered in both IIoT and EVCS systems. LSTM networks are selected for their proven efficacy in processing and making predictions based on long-term dependencies in time-series data, a common characteristic in the operational data of EVCS and IIoT systems. This transition underscores a methodological advancement towards models capable of capturing complex, temporal data relationships, essential for detecting sophisticated anomalies. We carried out ML-based anomaly detection using the WUSTL-IIoT datasets from 2018 and 2021. The ML algorithms underwent extensive training and evaluation, demonstrating substantial effectiveness. Specifically, the SVM and DT models attained an accuracy of 97.6%, with the RF model achieving a slightly superior accuracy of 98.8%. To enhance the detection capability, an LSTM model was implemented, which achieved a remarkable accuracy rate of 99.57%. This performance exemplifies the advanced potential of DL methodologies in navigating the complexities of anomaly detection within intricate data environments. We carried out LSTM-based anomaly detection in EVCS systems by utilizing the CICEVCS 2023 and 2024 datasets. These datasets, encompassing a wide range of attack scenarios along with normal operational data, provided a complex backdrop for the application of the LSTM model. The DL algorithm skillfully navigated these complexities, achieving an impressive accuracy rate of 99.589% in identifying anomalies. This experiment underscores the advanced capabilities of DL, specifically LSTM, in accurately analyzing and predicting anomalies across comprehensive time-series data streams within EVCS systems. The findings from these case studies highlight the pivotal role of ML and DL algorithms in advancing anomaly detection capabilities within IIoT and EVCS systems. By meticulously applying and evaluating SVM, DT, RF, and LSTM models against real-world operational and attack scenarios, this thesis demonstrates the efficacy of these computational techniques in identifying anomalies and enhances the strategic framework for securing CPS against emerging cyber threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要楽奈完成签到,获得积分10
刚刚
刚刚
月亮发布了新的文献求助10
刚刚
刚刚
2秒前
文静的海发布了新的文献求助10
4秒前
饭饭完成签到,获得积分10
5秒前
夏弥2016完成签到,获得积分10
5秒前
RRC发布了新的文献求助10
5秒前
6秒前
orixero应助健壮的夕阳采纳,获得10
7秒前
思源应助hyf采纳,获得10
7秒前
好好关注了科研通微信公众号
7秒前
wxyshare举报米文求助涉嫌违规
8秒前
自觉翠安应助贤惠的大山采纳,获得30
10秒前
13秒前
1234发布了新的文献求助10
13秒前
小马甲应助RRC采纳,获得10
13秒前
14秒前
何1完成签到 ,获得积分10
14秒前
16秒前
17秒前
18秒前
爆米花应助sqly采纳,获得10
19秒前
19秒前
22秒前
hyf发布了新的文献求助10
23秒前
24秒前
初星完成签到,获得积分10
25秒前
上官若男应助dgqlcc采纳,获得10
26秒前
26秒前
26秒前
迅速雅阳发布了新的文献求助30
28秒前
西门长海完成签到,获得积分10
29秒前
29秒前
29秒前
29秒前
流香完成签到 ,获得积分10
29秒前
jason应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330