A Computationally Assisted Approach for Designing Wearable Biosensors toward Non‐Invasive Personalized Molecular Analysis

可穿戴计算机 计算机科学 纳米技术 可穿戴技术 生物传感器 材料科学 嵌入式系统
作者
Daniel Mukasa,Minqiang Wang,Jihong Min,Yiran Yang,S. Solomon,Hong Han,Cui Ye,Wei Gao
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (35) 被引量:59
标识
DOI:10.1002/adma.202212161
摘要

Abstract Wearable sweat sensors have the potential to revolutionize precision medicine as they can non‐invasively collect molecular information closely associated with an individual's health status. However, the majority of clinically relevant biomarkers cannot be continuously detected in situ using existing wearable approaches. Molecularly imprinted polymers (MIPs) are a promising candidate to address this challenge but haven't yet gained widespread use due to their complex design and optimization process yielding variable selectivity. Here, QuantumDock is introduced, an automated computational framework for universal MIP development toward wearable applications. QuantumDock utilizes density functional theory to probe molecular interactions between monomers and the target/interferent molecules to optimize selectivity, a fundamentally limiting factor for MIP development toward wearable sensing. A molecular docking approach is employed to explore a wide range of known and unknown monomers, and to identify the optimal monomer/cross‐linker choice for subsequent MIP fabrication. Using an essential amino acid phenylalanine as the exemplar, experimental validation of QuantumDock is performed successfully using solution‐synthesized MIP nanoparticles coupled with ultraviolet–visible spectroscopy. Moreover, a QuantumDock‐optimized graphene‐based wearable device is designed that can perform autonomous sweat induction, sampling, and sensing. For the first time, wearable non‐invasive phenylalanine monitoring is demonstrated in human subjects toward personalized healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只吃7分饱发布了新的文献求助10
1秒前
英姑应助小小研究牲11采纳,获得10
1秒前
Joy发布了新的文献求助10
1秒前
顾矜应助不呐呐采纳,获得10
1秒前
ndhy完成签到,获得积分10
2秒前
2秒前
jeonghan发布了新的文献求助10
2秒前
wy_wy发布了新的文献求助10
2秒前
2秒前
twinkle完成签到,获得积分10
3秒前
hui发布了新的文献求助10
4秒前
马吉克完成签到 ,获得积分10
4秒前
文森特的向日葵完成签到,获得积分10
4秒前
如初发布了新的文献求助10
4秒前
Cccrik完成签到,获得积分10
4秒前
王小雨完成签到 ,获得积分10
4秒前
猪猪hero发布了新的文献求助10
5秒前
浮若安生完成签到,获得积分10
5秒前
6秒前
邵丹完成签到 ,获得积分20
6秒前
Cccrik发布了新的文献求助30
7秒前
汉堡包应助一刀采纳,获得10
7秒前
7秒前
Dr.向发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助and999采纳,获得10
9秒前
英俊的铭应助夜莺采纳,获得10
10秒前
在水一方应助夜莺采纳,获得10
10秒前
Lucas应助夜莺采纳,获得10
10秒前
Jasper应助夜莺采纳,获得10
10秒前
完美世界应助onepine采纳,获得10
10秒前
落后青筠完成签到 ,获得积分10
10秒前
12秒前
JamesPei应助jeonghan采纳,获得10
13秒前
Adler发布了新的文献求助60
13秒前
wy_wy完成签到,获得积分10
13秒前
情怀应助猪猪hero采纳,获得10
14秒前
浮华完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069