亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RVFL: Rational Verifiable Federated Learning Secure Aggregation Protocol

共谋 计算机科学 服务器 可验证秘密共享 正确性 计算机安全 分布式计算 计算机网络 算法 集合(抽象数据类型) 程序设计语言 经济 微观经济学
作者
Xianyu Mu,Youliang Tian,Zhou Zhou,Shuai Wang,Jinbo Xiong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (14): 25147-25161 被引量:3
标识
DOI:10.1109/jiot.2024.3390545
摘要

Using federated learning (FL) to train global models in IoT improves computational efficiency and protects users' data privacy. However, FL still faces privacy threats. Driven by interests, servers reduce their computational cost or induce wrong decisions in IoT devices by returning wrong global model gradients. Although the verifiability of aggregation results is achieved in previous research, it is difficult to defend against collusion attacks launched by servers and users. Therefore, we construct a rational verifiable federated learning secure aggregation protocol based on the dual-server framework and game theory, which achieves verifiable aggregation results, and effectively defends against collusion attacks. Firstly, we propose a new model verification code based on the property of irreversible matrices, which allows users to verify the correctness of the aggregation results by matrix products. This model validation code is computationally efficient and resistant to the adversary's backward inference. Secondly, we adopt a dual-server architecture and improve the prisoner contract and betrayal contract according to the actual application scenarios of IoT, converting the previous collusion attacks between servers and users to collusion attacks between servers and making the rational servers not launch collusion attacks to destroy the verification mechanism of the aggregation results through the incentive mechanism. Finally, we demonstrate through security analysis that RVFL is secure and effective against collusion and reverse inference attacks. In addition, we show through experimental results that RVFL can improve its efficiency by three orders of magnitude in the verification phase and 88% in the masking phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
橙子完成签到 ,获得积分10
13秒前
xxxxx炒菜完成签到,获得积分10
19秒前
xxxxx炒菜发布了新的文献求助10
22秒前
43秒前
一梦完成签到,获得积分10
48秒前
50秒前
1分钟前
小高完成签到 ,获得积分10
1分钟前
2分钟前
嘟嘟嘟嘟完成签到,获得积分10
2分钟前
田様应助cchh采纳,获得10
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
fenfen发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助断罪残影采纳,获得10
2分钟前
2分钟前
方沅完成签到,获得积分10
2分钟前
L_MD完成签到,获得积分10
2分钟前
cchh发布了新的文献求助10
2分钟前
YY发布了新的文献求助10
2分钟前
2分钟前
cchh完成签到,获得积分20
2分钟前
冷静新烟完成签到,获得积分10
2分钟前
shentaii完成签到,获得积分10
3分钟前
3分钟前
tao发布了新的文献求助10
3分钟前
充电宝应助tao采纳,获得10
3分钟前
小马甲应助依古比古采纳,获得10
3分钟前
3分钟前
小坚果完成签到 ,获得积分10
3分钟前
Krim完成签到 ,获得积分10
3分钟前
小泉发布了新的文献求助10
3分钟前
依古比古发布了新的文献求助10
3分钟前
IfItheonlyone完成签到 ,获得积分10
3分钟前
天真的乌完成签到 ,获得积分10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ChinaNiu发布了新的文献求助10
4分钟前
孤独的大灰狼完成签到 ,获得积分10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130393
求助须知:如何正确求助?哪些是违规求助? 3667312
关于积分的说明 11600729
捐赠科研通 3365524
什么是DOI,文献DOI怎么找? 1849091
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828355