声子
电子
凝聚态物理
物理
散射
放松(心理学)
半经典物理学
原子物理学
量子
量子力学
心理学
社会心理学
作者
Shaozhi Gao,Yu‐Chen Wang,Yi Zhao
摘要
The electron–phonon scattering plays a crucial role in determining the electronic, transport, optical, and thermal properties of materials. Here, we employ a non-Markovian stochastic Schrödinger equation (NMSSE) in momentum space, together with ab initio calculations for energy bands and electron–phonon interactions, to reveal the phonon-mediated ultrafast hole relaxation dynamics in the valence bands of monolayer black phosphorus. Our numerical simulations show that the hole can initially remain in the high-energy valence bands for more than 100 fs due to the weak interband scatterings, and its energy relaxation follows single-exponential decay toward the valence band maximum after scattering into low-energy valence bands. The total relaxation time of holes is much longer than that of electrons in the conduction band. This suggests that harnessing the excess energy of holes may be more effective than that of electrons. Compared to the semiclassical Boltzmann equation based on a hopping model, the NMSSE highlights the persistence of quantum coherence for a long time, which significantly impacts the relaxation dynamics. These findings complement the understanding of hot carrier relaxation dynamics in two-dimensional materials and may offer novel insights into harnessing hole energy in photocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI