Spectral-Temporal Low-Rank Regularization with Deep Prior for Thick Cloud Removal

先验概率 计算机科学 正规化(语言学) 人工智能 高光谱成像 深度学习 云计算 模式识别(心理学) 计算机视觉 贝叶斯概率 操作系统
作者
Zhentao Zou,Lin Chen,Xue Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3347930
摘要

Remote sensing (RS) images are unavoidably contaminated by thick clouds, greatly limiting their subsequent application and exploration. Most existing conventional thick cloud removal methods are based on hand-crafted priors, which utilize the low-rank or smoothness property to regularize the latent RS images. However, these hand-crafted priors are failed to describe the rich structure that many RS images exhibit. Deep learning (DL) methods achieve their performance owing to extensive labeled training data while large-scale labeled data are expensive to acquire in the RS scene. In this paper, a thick cloud removal method named Spectral-Temporal Low-Rank regularization with Deep Prior (STLR-DP) is proposed to tackle these issues, solely using a single cloud-contaminated image without any extra external training data or pre-trained models, which utilizes an untrained neural network to capture the rich characteristic of RS images rather than hand-crafted priors. The spectral-temporal low-rank regularization is further incorporated into the model to avoid the over-fitting problem. Benefiting from the deep intrinsic image characteristic captured by the neural network and its self-supervised nature, our method can effectively simultaneously reconstruct the contour and details of contaminated regions, and can be adaptive to various RS images with strong generalization ability. Experimental results on simulated and real datasets demonstrate that the proposed STLR-DP method outperforms the representative thick cloud removal and tensor completion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的逊发布了新的文献求助30
1秒前
2秒前
3秒前
贺六浑发布了新的文献求助10
3秒前
SneaPea完成签到,获得积分10
4秒前
充电宝应助扶余山本采纳,获得10
6秒前
合适不悔发布了新的文献求助10
8秒前
一帆风顺发布了新的文献求助10
8秒前
别找了睡觉吧完成签到 ,获得积分10
8秒前
le完成签到,获得积分10
10秒前
11秒前
Hello应助简单的铃铛采纳,获得10
11秒前
word麻鸭完成签到 ,获得积分10
14秒前
KINDMAGIC发布了新的文献求助20
14秒前
zjy发布了新的文献求助10
15秒前
小马甲应助XU采纳,获得10
15秒前
小羊完成签到,获得积分10
20秒前
20秒前
赵梦娜完成签到,获得积分10
20秒前
木头杨完成签到,获得积分10
21秒前
22秒前
万能图书馆应助赵梦娜采纳,获得10
24秒前
宋小雅完成签到,获得积分10
25秒前
26秒前
顾安完成签到 ,获得积分10
27秒前
李健的小迷弟应助洛必达采纳,获得10
27秒前
要减肥仰发布了新的文献求助10
28秒前
yyz发布了新的文献求助10
32秒前
小马甲应助zjy采纳,获得10
32秒前
33秒前
田様应助Vegccc采纳,获得10
34秒前
36秒前
37秒前
岩墩墩完成签到 ,获得积分10
37秒前
泥娃娃完成签到,获得积分10
37秒前
木子木子粒完成签到 ,获得积分10
38秒前
39秒前
SneaPea发布了新的文献求助30
41秒前
调皮绮烟发布了新的文献求助10
41秒前
司徒文青发布了新的文献求助10
42秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413