Intelligent Sedimentary Lithofacies Identification With Integrated Well Logging Features

鉴定(生物学) 岩性 测井 人工神经网络 噪音(视频) 地质学 计算机科学 储层建模 登录中 人工智能 数据挖掘 地球物理学 岩石学 古生物学 石油工程 生态学 植物 生物 构造盆地 图像(数学)
作者
Shuwen Guo,Naxia Yang,Chunxiang Guo,Dongfeng Zhao,Hao Li,Guofa Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3347565
摘要

Lithology identification is the research basis in oil and gas reservoir exploration and is critical for formation characterization and reservoir development. Traditional lithofacies identification methods rely on the knowledge and experience of geologists and are usually done manually. With the development of deep learning technology and its application in the field of geophysics, lithofacies identification based on deep-learning approach has attracted great attention in recent years. Well logging data has obvious sequence characteristics. Therefore, we propose to use a bidirectional long and short-term memory (BiLSTM) neural network to learn long-term information for more effective lithology facies classification. In addition, we also perform correlation analysis on the input well logging curves and conduct median filter at different scales according to the correlation degree to extract the geological features within data itself and discard the interference of noise. The raw data-based lithofacies identification can reflect the noise resistance of the neural network model to some extent, while the filtered data are more beneficial for the model to extract the geological features correlated with lithofacies and provide the more accurate classification results. We validate our proposed framework by applying it to a study case from the Council Grove gas reservoir located in Kansas. Furthermore, we compare the effect of input data and network model on the identification results. The experimental results show that the proposed lithofacies identification method has higher classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin发布了新的文献求助10
刚刚
内向苡完成签到,获得积分10
1秒前
jorjames发布了新的文献求助10
1秒前
2秒前
2秒前
小二郎应助wyr525采纳,获得10
3秒前
丹dan完成签到,获得积分10
4秒前
sam0522发布了新的文献求助10
5秒前
酷波er应助小包谷采纳,获得10
5秒前
充电宝应助hebei采纳,获得10
6秒前
sinn17完成签到,获得积分10
6秒前
8秒前
可爱的冷霜完成签到,获得积分10
9秒前
田様应助王文静采纳,获得10
9秒前
10秒前
老魏完成签到,获得积分10
10秒前
脑洞疼应助SuperFAN采纳,获得10
11秒前
___赵完成签到,获得积分10
13秒前
13秒前
14秒前
Miraitowa完成签到 ,获得积分10
14秒前
李爱国应助景笑天采纳,获得10
15秒前
16秒前
18秒前
18秒前
19秒前
Morning发布了新的文献求助10
19秒前
19秒前
Owen应助swallow采纳,获得10
20秒前
20秒前
22秒前
HOLLYWOO发布了新的文献求助10
24秒前
小包谷发布了新的文献求助10
25秒前
25秒前
嘻嘻哈哈应助yty采纳,获得10
26秒前
紫色茄子应助yty采纳,获得10
26秒前
爆米花应助yty采纳,获得10
26秒前
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270