Intelligent Sedimentary Lithofacies Identification With Integrated Well Logging Features

鉴定(生物学) 岩性 测井 人工神经网络 噪音(视频) 地质学 计算机科学 储层建模 登录中 人工智能 数据挖掘 地球物理学 岩石学 古生物学 石油工程 构造盆地 图像(数学) 生物 植物 生态学
作者
Shuwen Guo,Naxia Yang,Chunxiang Guo,Dongfeng Zhao,Hao Li,Guofa Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3347565
摘要

Lithology identification is the research basis in oil and gas reservoir exploration and is critical for formation characterization and reservoir development. Traditional lithofacies identification methods rely on the knowledge and experience of geologists and are usually done manually. With the development of deep learning technology and its application in the field of geophysics, lithofacies identification based on deep-learning approach has attracted great attention in recent years. Well logging data has obvious sequence characteristics. Therefore, we propose to use a bidirectional long and short-term memory (BiLSTM) neural network to learn long-term information for more effective lithology facies classification. In addition, we also perform correlation analysis on the input well logging curves and conduct median filter at different scales according to the correlation degree to extract the geological features within data itself and discard the interference of noise. The raw data-based lithofacies identification can reflect the noise resistance of the neural network model to some extent, while the filtered data are more beneficial for the model to extract the geological features correlated with lithofacies and provide the more accurate classification results. We validate our proposed framework by applying it to a study case from the Council Grove gas reservoir located in Kansas. Furthermore, we compare the effect of input data and network model on the identification results. The experimental results show that the proposed lithofacies identification method has higher classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的千青完成签到 ,获得积分10
2秒前
鸣笛应助入暖采纳,获得10
2秒前
qingfengnai完成签到,获得积分10
4秒前
无奈的依琴完成签到,获得积分10
4秒前
KK完成签到,获得积分10
4秒前
沈佳琪完成签到,获得积分10
5秒前
我不是奶黄包完成签到,获得积分10
5秒前
寄语明月完成签到,获得积分10
5秒前
7秒前
我喜欢大学霸完成签到,获得积分10
8秒前
曾经的刺猬完成签到,获得积分10
8秒前
8秒前
10秒前
ZR14124完成签到,获得积分10
10秒前
噫嘘玺完成签到,获得积分10
11秒前
BYN完成签到 ,获得积分10
12秒前
miracle完成签到 ,获得积分10
12秒前
缘分完成签到,获得积分10
12秒前
言庭兰玉完成签到,获得积分10
13秒前
Pheonix1998发布了新的文献求助10
13秒前
包容友儿完成签到,获得积分10
14秒前
小曾完成签到,获得积分10
14秒前
boxi完成签到 ,获得积分10
15秒前
unfeeling8完成签到 ,获得积分10
16秒前
自然完成签到,获得积分10
17秒前
17秒前
18秒前
随大溜完成签到,获得积分10
18秒前
隐形曼青应助laola采纳,获得10
18秒前
wss完成签到,获得积分10
19秒前
布丁圆团完成签到,获得积分10
19秒前
ei123应助上善若水采纳,获得30
21秒前
carol0705完成签到,获得积分10
22秒前
wentao发布了新的文献求助20
22秒前
乐观小之应助nzh19802采纳,获得10
22秒前
蓝橙完成签到,获得积分10
22秒前
温婉的乌发布了新的文献求助10
22秒前
woommoow完成签到,获得积分10
24秒前
24秒前
月亮快打烊吖完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946231
求助须知:如何正确求助?哪些是违规求助? 3491150
关于积分的说明 11059379
捐赠科研通 3222109
什么是DOI,文献DOI怎么找? 1780883
邀请新用户注册赠送积分活动 865877
科研通“疑难数据库(出版商)”最低求助积分说明 800083