Design of smart home system speech emotion recognition model based on ensemble deep learning and feature fusion

情绪识别 特征(语言学) 语音识别 计算机科学 融合 集成学习 深度学习 人工智能 模式识别(心理学) 语言学 哲学
作者
Mengsheng Wang,Hongbin Ma,Yingli Wang,Xian–He Sun
出处
期刊:Applied Acoustics [Elsevier]
卷期号:218: 109886-109886 被引量:8
标识
DOI:10.1016/j.apacoust.2024.109886
摘要

In the realm of consumer technology, Artificial Intelligence (AI)-based Speech Emotion Recognition (SER) has rapidly gained traction and integration into smart home systems. Its precision in recognition has become a pivotal factor significantly impacting user experience. However, the intricate task of selecting suitable features has emerged as a daunting challenge due to the variances in speech features induced by emotional nuances. Present research predominantly concentrates on localized speech characteristics, neglecting the broader contextual cues inherent in speech signals. This oversight contributes to relatively diminished accuracy in emotion recognition within smart home systems. To tackle this challenge, this paper introduces an enhanced Speech Emotion Recognition approach named TF-Mix. This methodology enriches emotional prediction from speech by leveraging audio data augmentation and embracing multiple features, thereby achieving superior performance in emotion recognition. To augment the model's adaptability, TF-Mix adeptly amalgamates various feature extraction techniques, encompassing Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and Transformer architecture. The synergy among these methodologies culminates in the formulation of three distinct architectural models. The primary architecture is founded on a 1-dimensional Convolutional Neural Network (CNN), closely followed by a Fully Connected Network (FCN). Subsequent architectures, notably BiLSTM-FCN and BiLSTM-Transformer-FCN, retain their respective structures while incorporating CNNs. Moreover, the amalgamation of individual models into an ensemble model, designated as D, via weighted averaging, further amplifies the efficacy of emotion recognition. Experimental outcomes showcase exceptional performance across all four models in the SER task. The ensemble Model D achieves noteworthy accuracy across multiple datasets: 87.513% on RAVDESS, 86.233% on SAVEE, 99.857% on TESS, 82.295% on CREMA-D, and 97.546% on the TOTAL dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大方蜡烛完成签到,获得积分20
1秒前
White.K完成签到,获得积分10
1秒前
2秒前
orixero应助hongqian采纳,获得10
2秒前
奥米希完成签到,获得积分10
2秒前
幸运星完成签到,获得积分10
3秒前
wjy发布了新的文献求助10
3秒前
Lize给Lize的求助进行了留言
3秒前
量子星尘发布了新的文献求助10
3秒前
徐恺发布了新的文献求助10
3秒前
aaa关注了科研通微信公众号
3秒前
NARUTO完成签到 ,获得积分10
4秒前
4秒前
大意的乐菱完成签到,获得积分10
4秒前
JamesPei应助Leeyouyou采纳,获得10
4秒前
暖暖完成签到,获得积分20
4秒前
多情凝蕊发布了新的文献求助10
4秒前
咸鱼不吃吐司完成签到 ,获得积分10
5秒前
Mavis发布了新的文献求助10
5秒前
5秒前
Yuki完成签到,获得积分10
6秒前
7秒前
完美世界应助风中的觅海采纳,获得30
8秒前
8秒前
8秒前
勤恳慕蕊发布了新的文献求助10
9秒前
胡图图关注了科研通微信公众号
9秒前
9秒前
10秒前
10秒前
11秒前
完美的钢笔完成签到,获得积分10
12秒前
慕青应助落寞的一斩采纳,获得10
12秒前
haishixigua完成签到,获得积分10
13秒前
万能图书馆应助LIU采纳,获得10
13秒前
kiki完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164