材料科学
X射线光电子能谱
钴
石墨烯
磁圆二色性
铁磁性
硅
铂金
基质(水族馆)
电子衍射
覆盖层
结晶学
凝聚态物理
纳米技术
核磁共振
衍射
冶金
光学
化学
谱线
物理
天文
海洋学
生物化学
地质学
催化作用
作者
P Weinert,Julian Andreas Hochhaus,Lukas Kesper,Rainer Appel,Stefanie Hilgers,Marie Schmitz,Malte G. H. Schulte,Richard E. Honig,Florian Kronast,S. València,Mattias Kruskopf,Atasi Chatterjee,U. Berges,C. Westphal
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2024-01-11
卷期号:35 (16): 165702-165702
被引量:1
标识
DOI:10.1088/1361-6528/ad1d7b
摘要
Abstract We investigate the magnetic interlayer coupling and domain structure of ultra-thin ferromagnetic (FM) cobalt (Co) layers embedded between a graphene (G) layer and a platinum (Pt) layer on a silicon carbide (SiC) substrate (G/Co/Pt on SiC). Experimentally, a combination of x-ray photoemission electron microscopy with x-ray magnetic circular dichroism has been carried out at the Co L-edge. Furthermore, structural and chemical properties of the system have been investigated using low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS). In situ LEED patterns revealed the crystalline structure of each layer within the system. Moreover, XPS confirmed the presence of quasi-freestanding graphene, the absence of cobalt silicide, and the appearance of two silicon carbide surface components due to Pt intercalation. Thus, the Pt-layer effectively functions as a diffusion barrier. The magnetic structure of the system was unaffected by the substrate’s step structure. Furthermore, numerous vortices and anti-vortices were found in all samples, distributed all over the surfaces, indicating Dzyaloshinskii–Moriya interaction. Only regions with a locally increased Co-layer thickness showed no vortices. Moreover, unlike in similar systems, the magnetization was predominantly in-plane, so no perpendicular magnetic anisotropy was found.
科研通智能强力驱动
Strongly Powered by AbleSci AI