A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine

代谢型谷氨酸受体5 NMDA受体 神经科学 抗抑郁药 氯胺酮 代谢型谷氨酸受体 谷氨酸的 药理学 AMPA受体 突触可塑性 PI3K/AKT/mTOR通路 长时程增强 谷氨酸受体 化学 生物 海马体 受体 信号转导 细胞生物学 生物化学
作者
Ola Sobhy A. Elmeseiny,Heidi Kaastrup Müller
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:200: 107081-107081 被引量:6
标识
DOI:10.1016/j.phrs.2024.107081
摘要

Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lone623发布了新的文献求助10
1秒前
嘉禾瑶发布了新的文献求助10
1秒前
1秒前
树叶有专攻完成签到,获得积分10
1秒前
好好学习发布了新的文献求助10
2秒前
2秒前
xxn发布了新的文献求助10
3秒前
张子珍完成签到,获得积分20
3秒前
hfguwn发布了新的文献求助10
4秒前
悬殊发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
张子珍发布了新的文献求助10
7秒前
7秒前
Ray发布了新的文献求助10
7秒前
Ava应助嘉禾瑶采纳,获得10
7秒前
7秒前
时尚的八宝粥完成签到,获得积分10
8秒前
8秒前
富婆莱莱发布了新的文献求助10
9秒前
模糊中正应助树有麋鹿采纳,获得30
10秒前
Hello应助Maestro_S采纳,获得30
11秒前
Clay完成签到,获得积分10
12秒前
xgx984发布了新的文献求助10
13秒前
dingjianqiang发布了新的文献求助10
14秒前
14秒前
守序完成签到,获得积分20
15秒前
科研通AI5应助李7采纳,获得10
16秒前
Clay发布了新的文献求助10
16秒前
慕青应助www采纳,获得10
16秒前
柠檬加冰发布了新的文献求助10
17秒前
19秒前
19秒前
hualin完成签到,获得积分10
20秒前
20秒前
Rita发布了新的文献求助10
20秒前
ohno耶耶耶发布了新的文献求助10
22秒前
个性归尘应助富婆莱莱采纳,获得10
22秒前
23秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830