Segment anything model for medical images?

计算机科学 分割 人工智能 对象(语法) 图像分割 随机性 计算机视觉 模态(人机交互) 图像(数学) 模式识别(心理学) 数学 统计
作者
Yuhao Huang,Xin Yang,Lian Liu,Han Zhou,Chang Ao,Xinrui Zhou,Rusi Chen,Junxuan Yu,Jiongquan Chen,Chaoyu Chen,Sijing Liu,Haozhe Chi,Xindi Hu,Kejuan Yue,Lei Li,Vicente Grau,Deng-Ping Fan,Fajin Dong,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:92: 103061-103061 被引量:182
标识
DOI:10.1016/j.media.2023.103061
摘要

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: (1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. (2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. (3) SAM performed better with manual hints, especially box, than the Everything mode. (4) SAM could help human annotation with high labeling quality and less time. (5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. (6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. (7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. (8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. Codes and models are available at: https://github.com/yuhoo0302/Segment-Anything-Model-for-Medical-Images. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
濠哥妈咪完成签到,获得积分10
8秒前
Kelly完成签到 ,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
16秒前
可爱的函函应助dongsanmuer采纳,获得10
16秒前
小蘑菇应助dongsanmuer采纳,获得10
16秒前
wanci应助dongsanmuer采纳,获得10
16秒前
搜集达人应助dongsanmuer采纳,获得10
16秒前
华西招生版完成签到,获得积分10
17秒前
gzf213完成签到,获得积分10
17秒前
zhangxinan完成签到,获得积分10
18秒前
伶俐耳机完成签到 ,获得积分10
19秒前
贪玩仙人掌完成签到,获得积分10
20秒前
24秒前
小宝完成签到,获得积分10
24秒前
昵称完成签到,获得积分10
26秒前
噜噜晓完成签到 ,获得积分10
27秒前
27秒前
海孩子完成签到,获得积分10
29秒前
无情灯泡完成签到,获得积分10
29秒前
王正浩完成签到 ,获得积分10
33秒前
龚尔蓝发布了新的文献求助10
33秒前
怕黑的凝旋完成签到 ,获得积分10
35秒前
123完成签到,获得积分10
40秒前
gogogog完成签到 ,获得积分10
46秒前
Solar energy发布了新的文献求助10
47秒前
neckerzhu完成签到 ,获得积分10
50秒前
香蕉觅云应助无情灯泡采纳,获得10
51秒前
健忘数据线完成签到 ,获得积分10
57秒前
58秒前
qqqqq完成签到,获得积分10
58秒前
黄黄黄完成签到,获得积分10
1分钟前
饱满的棒棒糖完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助qqy采纳,获得10
1分钟前
陆浩学化学完成签到 ,获得积分10
1分钟前
什么也难不倒我完成签到 ,获得积分10
1分钟前
qqy完成签到,获得积分10
1分钟前
TINA完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779313
求助须知:如何正确求助?哪些是违规求助? 3324815
关于积分的说明 10220137
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503