iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities

抗菌肽 鉴定(生物学) 计算机科学 标杆管理 人工智能 机器学习 冗余(工程) 计算生物学 抗菌剂 生物 植物 营销 微生物学 业务 操作系统
作者
Jing Xu,Fuyi Li,Chen Li,Xudong Guo,Cornelia B. Landersdorfer,Hsin‐Hui Shen,Anton Y. Peleg,Jian Li,Seiya Imoto,Jianhua Yao,Tatsuya Akutsu,Jiangning Song
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:28
标识
DOI:10.1093/bib/bbad240
摘要

Antimicrobial peptides (AMPs) are short peptides that play crucial roles in diverse biological processes and have various functional activities against target organisms. Due to the abuse of chemical antibiotics and microbial pathogens' increasing resistance to antibiotics, AMPs have the potential to be alternatives to antibiotics. As such, the identification of AMPs has become a widely discussed topic. A variety of computational approaches have been developed to identify AMPs based on machine learning algorithms. However, most of them are not capable of predicting the functional activities of AMPs, and those predictors that can specify activities only focus on a few of them. In this study, we first surveyed 10 predictors that can identify AMPs and their functional activities in terms of the features they employed and the algorithms they utilized. Then, we constructed comprehensive AMP datasets and proposed a new deep learning-based framework, iAMPCN (identification of AMPs based on CNNs), to identify AMPs and their related 22 functional activities. Our experiments demonstrate that iAMPCN significantly improved the prediction performance of AMPs and their corresponding functional activities based on four types of sequence features. Benchmarking experiments on the independent test datasets showed that iAMPCN outperformed a number of state-of-the-art approaches for predicting AMPs and their functional activities. Furthermore, we analyzed the amino acid preferences of different AMP activities and evaluated the model on datasets of varying sequence redundancy thresholds. To facilitate the community-wide identification of AMPs and their corresponding functional types, we have made the source codes of iAMPCN publicly available at https://github.com/joy50706/iAMPCN/tree/master. We anticipate that iAMPCN can be explored as a valuable tool for identifying potential AMPs with specific functional activities for further experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超男完成签到 ,获得积分10
2秒前
材料小王子完成签到,获得积分20
9秒前
春景当思完成签到,获得积分10
9秒前
10秒前
泡沫发布了新的文献求助10
14秒前
ding应助乐乐采纳,获得30
19秒前
unfeeling8完成签到 ,获得积分10
19秒前
星辰大海应助醉熏的丹秋采纳,获得10
19秒前
HH1202完成签到 ,获得积分10
20秒前
一路畅通accept完成签到,获得积分10
21秒前
聪慧芷巧完成签到,获得积分20
21秒前
多边形完成签到 ,获得积分10
22秒前
Xingkun_li完成签到,获得积分10
23秒前
摆哥完成签到,获得积分10
25秒前
材料小王子关注了科研通微信公众号
25秒前
泡沫完成签到,获得积分10
26秒前
安安的小板栗完成签到,获得积分10
27秒前
ng完成签到 ,获得积分10
28秒前
yyy完成签到 ,获得积分10
29秒前
31秒前
斯文败类应助科研通管家采纳,获得10
33秒前
33秒前
Jasper应助科研通管家采纳,获得10
33秒前
33秒前
故酒应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
34秒前
Owen应助lizhiqian2024采纳,获得10
34秒前
36秒前
40秒前
SOBER发布了新的文献求助10
47秒前
ZXD1989完成签到 ,获得积分10
50秒前
SOBER完成签到,获得积分20
57秒前
华仔应助高豪英采纳,获得10
1分钟前
飘逸怜菡完成签到,获得积分10
1分钟前
Arueliano完成签到,获得积分10
1分钟前
研友_852G6L完成签到,获得积分10
1分钟前
NorthWang完成签到,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726