Informative Data Selection With Uncertainty for Multimodal Object Detection

计算机科学 人工智能 稳健性(进化) 机器学习 传感器融合 深度学习 数据挖掘 计算机视觉 生物化学 基因 化学
作者
Xinyu Zhang,Zhiwei Li,Zhi-Tian Zou,Xin Gao,Yijin Xiong,Depeng Jin,Jun Li,Xinzhu Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tnnls.2023.3270159
摘要

Noise has always been nonnegligible trouble in object detection by creating confusion in model reasoning, thereby reducing the informativeness of the data. It can lead to inaccurate recognition due to the shift in the observed pattern, that requires a robust generalization of the models. To implement a general vision model, we need to develop deep learning models that can adaptively select valid information from multimodal data. This is mainly based on two reasons. Multimodal learning can break through the inherent defects of single-modal data, and adaptive information selection can reduce chaos in multimodal data. To tackle this problem, we propose a universal uncertainty-aware multimodal fusion model. It adopts a multipipeline loosely coupled architecture to combine the features and results from point clouds and images. To quantify the correlation in multimodal information, we model the uncertainty, as the inverse of data information, in different modalities and embed it in the bounding box generation. In this way, our model reduces the randomness in fusion and generates reliable output. Moreover, we conducted a completed investigation on the KITTI 2-D object detection dataset and its derived dirty data. Our fusion model is proven to resist severe noise interference like Gaussian, motion blur, and frost, with only slight degradation. The experiment results demonstrate the benefits of our adaptive fusion. Our analysis on the robustness of multimodal fusion will provide further insights for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小粥发布了新的文献求助10
1秒前
1秒前
小米发布了新的文献求助10
1秒前
emma应助晶莹雪2943采纳,获得10
1秒前
非泥完成签到,获得积分10
2秒前
提拉米苏完成签到,获得积分10
3秒前
JamesPei应助鹤川采纳,获得10
4秒前
amore完成签到 ,获得积分10
4秒前
4秒前
激动的小笼包完成签到,获得积分10
5秒前
热心树叶应助池鱼采纳,获得30
5秒前
7秒前
7秒前
森林木应助幸福的醉山采纳,获得30
7秒前
明亮访烟发布了新的文献求助10
8秒前
长度2到完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
Ray完成签到 ,获得积分10
9秒前
11秒前
11秒前
温暖的从云完成签到 ,获得积分10
12秒前
浮游应助小粥采纳,获得10
12秒前
DavidXie应助小粥采纳,获得10
12秒前
安然发布了新的文献求助10
15秒前
hhh发布了新的文献求助10
15秒前
17秒前
打打应助cardiology采纳,获得30
18秒前
赵君仪完成签到,获得积分10
19秒前
酷酷的傲之完成签到,获得积分10
20秒前
21秒前
21秒前
ldn发布了新的文献求助30
22秒前
可耐的芙蓉完成签到,获得积分10
22秒前
领导范儿应助小米采纳,获得10
23秒前
23秒前
浮游应助huhdcid采纳,获得10
23秒前
怡然的怜烟完成签到,获得积分0
24秒前
24秒前
善学以致用应助Lupin采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490311
求助须知:如何正确求助?哪些是违规求助? 4588930
关于积分的说明 14422006
捐赠科研通 4520870
什么是DOI,文献DOI怎么找? 2476883
邀请新用户注册赠送积分活动 1462361
关于科研通互助平台的介绍 1435242