Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chunxia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shiyan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (2): 2055-2071 被引量:7
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer (LC) interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve Bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865–0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a LC cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌萌完成签到,获得积分10
刚刚
刚刚
赘婿应助小竹采纳,获得10
1秒前
1秒前
1秒前
1秒前
盈盈发布了新的文献求助10
2秒前
Owen应助文献根本读不完采纳,获得10
2秒前
小杨发布了新的文献求助10
3秒前
善学以致用应助简单采纳,获得10
4秒前
nkpdsy完成签到,获得积分10
4秒前
dd完成签到,获得积分20
4秒前
英俊的铭应助包容寄风采纳,获得10
5秒前
5秒前
Xieyusen发布了新的文献求助10
6秒前
hh关注了科研通微信公众号
6秒前
dd发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
7秒前
听书人发布了新的文献求助10
8秒前
深情安青应助周周采纳,获得10
8秒前
9秒前
阿超完成签到 ,获得积分10
9秒前
11秒前
11秒前
华仔应助青菜采纳,获得10
11秒前
小马甲应助KingCrisom采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
TCMGG完成签到,获得积分10
12秒前
华仔应助西西采纳,获得10
12秒前
充电宝应助缺牙齿采纳,获得10
12秒前
13秒前
可爱的函函应助时尚溪流采纳,获得10
13秒前
ding应助yeye采纳,获得10
14秒前
14秒前
zodiac发布了新的文献求助10
15秒前
英姑应助周航采纳,获得10
15秒前
YUE发布了新的文献求助10
15秒前
Hello paper完成签到,获得积分10
15秒前
共享精神应助调皮平安采纳,获得20
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720909
求助须知:如何正确求助?哪些是违规求助? 5263062
关于积分的说明 15292658
捐赠科研通 4870174
什么是DOI,文献DOI怎么找? 2615270
邀请新用户注册赠送积分活动 1565197
关于科研通互助平台的介绍 1522273