Oral microbiota as a biomarker for predicting the risk of malignancy in indeterminate pulmonary nodules: a prospective multicenter study

医学 生物标志物 唾液 恶性肿瘤 内科学 前瞻性队列研究 降钙素原 普雷沃菌属 癌症 胃肠病学 肿瘤科 病理 生物 败血症 细菌 生物化学 遗传学
作者
Qiong Ma,Chun-Xia Huang,Jiawei He,Xiao Zeng,Yingming Qu,Hongxia Xiang,Zhong Yang,Lei Mao,Ruyi Zheng,Junjie Xiao,Yuling Jiang,Shi-Yan Tan,Ping Xiao,Xiang Zhuang,Liting You,Xi Fu,Yifeng Ren,C. Zheng,Fengming You
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002152
摘要

Background: Determining the benign or malignant status of indeterminate pulmonary nodules (IPN) with intermediate malignancy risk is a significant clinical challenge. Oral microbiota-lung cancer interactions have qualified oral microbiota as a promising non-invasive predictive biomarker in IPN. Materials and Methods: Prospectively collected saliva, throat swabs, and tongue coating samples from 1040 IPN patients and 70 healthy controls across three hospitals. Following up, the IPNs were diagnosed as benign (BPN) or malignant pulmonary nodules (MPN). Through 16S rRNA sequencing, bioinformatics analysis, fluorescence in situ hybridization (FISH), and seven machine learning algorithms (support vector machine, logistic regression, naïve bayes, multi-layer perceptron, random forest, gradient-boosting decision tree, and LightGBM), we revealed the oral microbiota characteristics at different stages of HC-BPN-MPN, identified the sample types with the highest predictive potential, constructed and evaluated the optimal MPN prediction model for predictive efficacy, and determined microbial biomarkers. Additionally, based on the SHAP algorithm interpretation of the ML model’s output, we have developed a visualized IPN risk prediction system on the web. Results: Saliva, tongue coating, and throat swab microbiotas exhibit site-specific characteristics, with saliva microbiota being the optimal sample type for disease prediction. The saliva-LightGBM model demonstrated the best predictive performance (AUC = 0.887, 95%CI: 0.865-0.918), and identified Actinomyces, Rothia, Streptococcus, Prevotella, Porphyromonas , and Veillonella as biomarkers for predicting MPN. FISH was used to confirm the presence of a microbiota within tumors, and external data from a lung cancer cohort, along with three non-IPN disease cohorts, were employed to validate the specificity of the microbial biomarkers. Notably, coabundance analysis of the ecological network revealed that microbial biomarkers exhibit richer interspecies connections within the MPN, which may contribute to the pathogenesis of MPN. Conclusion: This study presents a new predictive strategy for the clinic to determine MPNs from BPNs, which aids in the surgical decision-making for IPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
冰洁儿完成签到,获得积分10
1秒前
Orange应助阿啵呲嘚呃of咯采纳,获得10
4秒前
zhang值完成签到,获得积分10
4秒前
杜杜发布了新的文献求助10
4秒前
雷嘉伟完成签到,获得积分10
5秒前
5秒前
丹妮发布了新的文献求助10
6秒前
leigh发布了新的文献求助10
6秒前
cestmoi完成签到,获得积分20
7秒前
上官若男应助叮咚采纳,获得30
7秒前
9秒前
9秒前
Jasper应助WANG采纳,获得10
10秒前
打打应助活泼的飞扬采纳,获得10
10秒前
科研通AI2S应助66采纳,获得10
10秒前
11秒前
Tobby发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助余生采纳,获得10
13秒前
lzzka发布了新的文献求助10
15秒前
丹妮完成签到,获得积分10
15秒前
15秒前
大模型应助scq采纳,获得10
16秒前
淡然乞发布了新的文献求助10
16秒前
大意的觅云完成签到,获得积分10
16秒前
靓丽雅彤发布了新的文献求助10
17秒前
小橙子应助liii采纳,获得30
17秒前
Orange应助Tomi采纳,获得10
18秒前
香妃完成签到,获得积分10
19秒前
Tobby完成签到,获得积分10
20秒前
科研通AI5应助Jaden采纳,获得10
21秒前
21秒前
lzzka完成签到,获得积分10
22秒前
561关注了科研通微信公众号
23秒前
FashionBoy应助靓丽雅彤采纳,获得10
24秒前
充电宝应助jsjjs采纳,获得10
24秒前
tantantan应助jsjjs采纳,获得10
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065713
求助须知:如何正确求助?哪些是违规求助? 3604364
关于积分的说明 11447194
捐赠科研通 3326838
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899036
科研通“疑难数据库(出版商)”最低求助积分说明 819410