Gearbox Fault Diagnosis Based on Multi-Sensor and Multi-Channel Decision-Level Fusion Based on SDP

稳健性(进化) 卷积神经网络 计算机科学 频道(广播) 传感器融合 人工智能 断层(地质) 模式识别(心理学) 保险丝(电气) 计算机视觉 算法 工程类 电信 化学 地震学 地质学 电气工程 基因 生物化学
作者
Yuan Fu,Xiang Chen,Yu Liu,Chan Son,Yan Yang
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (15): 7535-7535 被引量:13
标识
DOI:10.3390/app12157535
摘要

In order to deal with the shortcomings (such as poor robustness) of the traditional single-channel vibration signal in the comprehensive monitoring of the gearbox fault state, a multi-channel decision-level fusion algorithm was proposed based on symmetrized dot pattern (SDP) analysis, with the visual geometry group 16 network (VGG16) fault diagnosis model. Firstly, the SDP method was used to convert the vibration signal of a single multi-channel sensor into an imaging arm. Secondly, the obtained image arm was input into the VGG16 convolutional neural network in order to train the fault diagnosis model that can be obtained. Then, the SDP images of the signals that were to be measured from multiple multi-channel sensors were input into the fault diagnosis model, and the diagnosis results of multiple multi-channel sensors could then be obtained. Experimentally, it was demonstrated that the diagnostic results of multi-channel sensors one, two, and three were more accurate than those of single-channel sensors one, two, and three, by 3.01%, 16.7%, and 5.17%, respectively. However, the fault generation was not generated in a single direction, but rather multiple directions. In order to improve the comprehensiveness of the raw vibration data, a fusion method using DS (Dempster–Shafer) evidence theory was proposed in order to fuse multiple multi-channel sensors, in which the accuracy achieved 99.93% when sensor one and sensor two were fused, which was an improvement of 8.88% and 1.02% over single sensors one and two, respectively. When sensor one and sensor three were fused, the accuracy reached 99.31%, which was an improvement of 8.31% and 6.17% over single sensors one and three, respectively. When sensor two and sensor three were fused, the accuracy reached 99.91%, which was an improvement of 1.00% and 6.74% over single sensors two and three, respectively. When three sensors were fused simultaneously, the accuracy reached 99.99%, which was 8.93%, 1.08%, and 6.81% better than single sensors one, two, and three, respectively. Therefore, it can be proved that the number of sensor channels has a great influence on the diagnosis results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
少吃顿饭并不难完成签到 ,获得积分10
1秒前
珞珈完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
nancylan应助LW采纳,获得10
3秒前
4秒前
yh发布了新的文献求助10
4秒前
5秒前
爆米花应助xiu-er采纳,获得10
5秒前
6秒前
6秒前
李茹关注了科研通微信公众号
6秒前
Hi完成签到,获得积分10
7秒前
共享精神应助刘祥采纳,获得10
7秒前
7秒前
7秒前
干净绿真发布了新的文献求助10
8秒前
开心千青发布了新的文献求助10
8秒前
情怀应助彩色的若南采纳,获得20
8秒前
9秒前
隐形曼青应助墨懿采纳,获得10
9秒前
weiwenzuo完成签到,获得积分10
10秒前
温柔的幻露完成签到,获得积分10
10秒前
田子廉发布了新的文献求助10
11秒前
落月铭完成签到,获得积分10
11秒前
xkhxh发布了新的文献求助10
11秒前
孝择发布了新的文献求助100
11秒前
12秒前
思源应助大力糜采纳,获得10
12秒前
hhhh完成签到,获得积分10
13秒前
13秒前
刘玲发布了新的文献求助10
14秒前
酷波er应助天边一阵风采纳,获得30
14秒前
tianmengkui完成签到,获得积分10
15秒前
落月铭发布了新的文献求助10
15秒前
Dragon完成签到,获得积分10
15秒前
15秒前
whs完成签到,获得积分20
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342127
求助须知:如何正确求助?哪些是违规求助? 4478048
关于积分的说明 13938042
捐赠科研通 4374445
什么是DOI,文献DOI怎么找? 2403529
邀请新用户注册赠送积分活动 1396244
关于科研通互助平台的介绍 1368307