Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure

材料科学 电介质 尖晶石 复合材料 储能 聚合物 工程物理 光电子学 冶金 热力学 物理 工程类 功率(物理)
作者
Jing Fu,Mingcong Yang,Rui Wang,Sang Cheng,Xiaoyan Huang,Shaojie Wang,Junluo Li,Manxi Li,Jinliang He,Qi Li
出处
期刊:Materials Today Energy [Elsevier BV]
卷期号:29: 101101-101101 被引量:39
标识
DOI:10.1016/j.mtener.2022.101101
摘要

The electrostatic energy storage performance of polymer dielectrics at high temperature and high electric field can be significantly improved by the incorporation of wide-bandgap, nano-sized particles. It is traditionally believed that the embedded nanoparticles can scatter the hot charges and lead to charge trapping in the interfacial region, which suppress the conduction loss and promote the energy storage performance. In this work, the nano-sized γ-Al 2 O 3 with cubic defect spinel structure and nano-sized α-Al 2 O 3 with a wider bandgap are introduced into a heat-resistant dielectric polymer, respectively, to form two different nanocomposites. The field-dependent energy storage performance, electrical conductivity , and breakdown strength of the polymer nanocomposites at high temperatures, as well as the thermally stimulated depolarization current , are investigated. The results indicate that the intrinsic deep traps introduced by γ-Al 2 O 3 with cubic defect spinel structure are a more critical factor in improving the energy storage performance of the polymer-based composites. We anticipate that our findings reported in this work may help to better guide the selection of nanofillers for high-temperature dielectric polymer nanocomposites. • In this work, pure-phase nanoscale α-Al 2 O 3 powders were prepared by high-energy ball milling process. • The origin of the improved high-temperature energy storage by using Al 2 O 3 nanofillers is not solely the large bandgap. • γ-Al 2 O 3 with defective spinel structures is more beneficial to suppress charge transport under extreme conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
村长夫人完成签到,获得积分10
刚刚
1秒前
2秒前
科研通AI5应助Hermit采纳,获得10
4秒前
CATH发布了新的文献求助10
4秒前
yoyocici1505完成签到,获得积分10
5秒前
ll驳回了大模型应助
5秒前
行舟完成签到 ,获得积分10
5秒前
楼小柚发布了新的文献求助10
7秒前
骑羊完成签到,获得积分10
7秒前
科研通AI5应助阿瑶与呆呆采纳,获得30
8秒前
皮肤科应助科研通管家采纳,获得30
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
zhzzhz应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
黄bb应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
黄bb应助科研通管家采纳,获得10
11秒前
失眠醉易应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助村长夫人采纳,获得10
11秒前
13秒前
楼小柚完成签到,获得积分10
15秒前
今后应助33采纳,获得50
17秒前
Shirley发布了新的文献求助10
18秒前
18秒前
19秒前
liqunfang完成签到,获得积分20
20秒前
21秒前
彭凯发布了新的文献求助10
24秒前
liqunfang发布了新的文献求助10
24秒前
未央歌完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776925
求助须知:如何正确求助?哪些是违规求助? 3322345
关于积分的说明 10209855
捐赠科研通 3037696
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 758001