Gate-Tunable Ionothermoelectric Cooling in a Solid-State Nanopore

作者
Makusu Tsutsui,Kazumichi Yokota,Wei‐Lun Hsu,Yuki Komoto,Denis Garoli,Hirofumi Daiguji,Tomoji Kawai
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (48): 41076-41085
标识
DOI:10.1021/acsnano.5c13339
摘要

Efficient heat dissipation at the nanoscale remains a major challenge for high-performance microelectronics. Here, we demonstrate a proof-of-concept approach for ionothermoelectric cooling, the ionic analogue of the Peltier effect, using gate-tunable solid-state nanopores integrated with nanoscale thermocouples. By integrating a nanoscale thermocouple directly adjacent to a gate-tunable solid-state nanopore, we quantitatively map local thermal responses driven by voltage-induced ion transport. We show that ionic heating scales with input power and varies with the ion species, revealing a dependence on the intrinsic heat of transport. Under salt concentration gradients, we observe ionic cooling, a fluidic analogue of the Peltier effect, arising from directional cation transport through negatively charged nanopores. This effect is further enhanced via electrostatic gating, which modulates the pore wall surface potential to tune the permselectivity. Under optimal gating, the system exhibits reversible transitions between heating and cooling regimes with temperature drops exceeding 2 K. Although modest compared to electronic Peltier devices, this effect establishes a viable mechanism for active, electrically tunable thermal management in nanofluidic systems. Given that water-based flow cooling already outperforms solid-state thermoelectrics by orders of magnitude, incorporating ionothermoelectric cooling can further enhance heat-pumping efficiency in micro- and nanofluidic architectures, thereby establishing a scalable on-chip ionic refrigeration strategy for next-generation semiconductor thermal control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
隐形曼青应助诗谙采纳,获得10
刚刚
pillow发布了新的文献求助10
刚刚
vikoel发布了新的文献求助30
1秒前
1056720198发布了新的文献求助10
1秒前
丰富以亦完成签到,获得积分10
1秒前
番茄大王完成签到,获得积分10
2秒前
wtingbai完成签到,获得积分20
2秒前
灯箱发布了新的文献求助10
2秒前
dd123完成签到,获得积分10
2秒前
111发布了新的文献求助10
3秒前
3秒前
weiyue完成签到,获得积分10
3秒前
3秒前
Hih完成签到,获得积分10
4秒前
刘景鑫关注了科研通微信公众号
4秒前
科研通AI6应助多不多乐采纳,获得10
4秒前
li发布了新的文献求助10
4秒前
4秒前
默问应助子夜采纳,获得10
4秒前
齐天大帝发布了新的文献求助30
4秒前
changyongcheng完成签到 ,获得积分10
5秒前
今晚吃什么完成签到,获得积分10
5秒前
6秒前
半岛铁盒完成签到,获得积分10
6秒前
Robin发布了新的文献求助10
6秒前
彩色橘子完成签到,获得积分10
6秒前
6秒前
6秒前
张萌洁完成签到,获得积分10
6秒前
6秒前
番茄大王发布了新的文献求助10
7秒前
7秒前
bfbdfbdf应助zglang511采纳,获得10
7秒前
我居然要写两篇小论文完成签到 ,获得积分10
7秒前
雷子发布了新的文献求助10
7秒前
7秒前
难两全完成签到,获得积分20
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620157
求助须知:如何正确求助?哪些是违规求助? 4704645
关于积分的说明 14928760
捐赠科研通 4760959
什么是DOI,文献DOI怎么找? 2550765
邀请新用户注册赠送积分活动 1513518
关于科研通互助平台的介绍 1474498