Machine learning prediction on the fractional free volume of polymer membranes

聚合物 范德瓦尔斯力 体积热力学 聚酰亚胺 热力学 吞吐量 材料科学 计算机科学 生物系统 化学 分子 物理 纳米技术 有机化学 复合材料 生物 电信 生物化学 无线 图层(电子)
作者
Lei Tao,Jinlong He,Tom Arbaugh,Jeffrey R. McCutcheon,Ying Li
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:665: 121131-121131 被引量:45
标识
DOI:10.1016/j.memsci.2022.121131
摘要

Fractional free volume (FFV) characterizes the microstructural level features of polymers and affects their properties including thermal, mechanical, and separation performance. Experimental measurements and theoretical analyses have been used to quantify the FFV of polymers, but challenges remain because of their limitations. Experimental measurements are laborious and based on semi-empirical equations, while Bondi's group contribution theory involves ambiguities like the determination of van der Waals volume and the choice of factor values in the theoretical equation. To efficiently evaluate the FFV of polymers, this study utilizes high-throughput molecular dynamics (MD) simulations to build a large dataset regarding polymer's FFV. Based on this large dataset, we further build machine learning (ML) models to establish the composition-structure relation. Inspired by group contribution theory which correlates polymer's functional groups to FFV, our ML models correlate polymer's sub-structures or physico-chemical indexes to FFV. Our study first benchmarks the MD simulation protocol to obtain reliable FFV of polymers and then carries out high-throughput MD simulations for more than 6500 homopolymers and 1400 polyamides. Such a large and diverse dataset makes the well-trained ML models more generalizable, compared with the group contribution theory. The efficiency of a feed-forward neural network model is further demonstrated by applying it to a hypothetical polyimide dataset of more than 8 million chemical structures. The predicted FFVs of hypothetical polyimides are further validated by MD simulations. The obtained FFVs of the 8 million polymers, plus their previously reported gas separation performances, demonstrate the promising capability of ML virtual screening for the discovery of polymer membranes with exceptional permeability/selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
科研畜生发布了新的文献求助10
1秒前
欣慰的书本完成签到 ,获得积分10
1秒前
Lensin完成签到 ,获得积分10
1秒前
动听千风完成签到 ,获得积分10
2秒前
Sunny完成签到 ,获得积分10
2秒前
6秒前
6秒前
SciGPT应助可研采纳,获得10
7秒前
朱博完成签到,获得积分10
7秒前
CodeCraft应助Lucky_Life采纳,获得10
10秒前
Huimin完成签到,获得积分10
11秒前
Everything发布了新的文献求助10
11秒前
jinshijie发布了新的文献求助10
13秒前
FashionBoy应助轩辕德地采纳,获得10
14秒前
15秒前
汪少侠完成签到,获得积分10
15秒前
16秒前
田様应助科研通管家采纳,获得30
16秒前
16秒前
njzqs完成签到,获得积分10
17秒前
薛定谔的猫完成签到,获得积分10
17秒前
17秒前
韭菜完成签到,获得积分20
18秒前
可研发布了新的文献求助10
18秒前
Everything完成签到,获得积分10
18秒前
小巧的映易完成签到,获得积分10
19秒前
曹志毅完成签到 ,获得积分10
20秒前
魔幻的妖丽完成签到 ,获得积分10
20秒前
iNk应助DZQ采纳,获得10
21秒前
Anonymous完成签到,获得积分10
21秒前
孤海未蓝完成签到,获得积分10
21秒前
QIQI完成签到,获得积分10
22秒前
Liskiat2021完成签到,获得积分10
23秒前
wwqc完成签到,获得积分0
23秒前
Lucky_Life发布了新的文献求助10
23秒前
机密塔完成签到,获得积分10
24秒前
24秒前
laoli2022完成签到,获得积分10
24秒前
nove999完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330150
关于积分的说明 10244534
捐赠科研通 3045519
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759577