已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning prediction on the fractional free volume of polymer membranes

聚合物 范德瓦尔斯力 体积热力学 聚酰亚胺 热力学 吞吐量 材料科学 计算机科学 生物系统 化学 分子 物理 纳米技术 有机化学 复合材料 生物 电信 生物化学 无线 图层(电子)
作者
Lei Tao,Jinlong He,Tom Arbaugh,Jeffrey R. McCutcheon,Ying Li
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:665: 121131-121131 被引量:61
标识
DOI:10.1016/j.memsci.2022.121131
摘要

Fractional free volume (FFV) characterizes the microstructural level features of polymers and affects their properties including thermal, mechanical, and separation performance. Experimental measurements and theoretical analyses have been used to quantify the FFV of polymers, but challenges remain because of their limitations. Experimental measurements are laborious and based on semi-empirical equations, while Bondi's group contribution theory involves ambiguities like the determination of van der Waals volume and the choice of factor values in the theoretical equation. To efficiently evaluate the FFV of polymers, this study utilizes high-throughput molecular dynamics (MD) simulations to build a large dataset regarding polymer's FFV. Based on this large dataset, we further build machine learning (ML) models to establish the composition-structure relation. Inspired by group contribution theory which correlates polymer's functional groups to FFV, our ML models correlate polymer's sub-structures or physico-chemical indexes to FFV. Our study first benchmarks the MD simulation protocol to obtain reliable FFV of polymers and then carries out high-throughput MD simulations for more than 6500 homopolymers and 1400 polyamides. Such a large and diverse dataset makes the well-trained ML models more generalizable, compared with the group contribution theory. The efficiency of a feed-forward neural network model is further demonstrated by applying it to a hypothetical polyimide dataset of more than 8 million chemical structures. The predicted FFVs of hypothetical polyimides are further validated by MD simulations. The obtained FFVs of the 8 million polymers, plus their previously reported gas separation performances, demonstrate the promising capability of ML virtual screening for the discovery of polymer membranes with exceptional permeability/selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
3秒前
八七发布了新的文献求助10
4秒前
浮游应助鹿呦采纳,获得10
4秒前
YVO4发布了新的文献求助10
4秒前
自觉芒果发布了新的文献求助20
5秒前
7秒前
summer发布了新的文献求助10
9秒前
炽岈发布了新的文献求助10
10秒前
我是老大应助Xumeiling采纳,获得30
10秒前
minhdh完成签到,获得积分10
10秒前
romy发布了新的文献求助10
11秒前
lida发布了新的文献求助10
11秒前
彭于晏应助饭团不吃鱼采纳,获得10
14秒前
15秒前
17秒前
CodeCraft应助lxl220采纳,获得10
18秒前
积极寻梅完成签到,获得积分20
22秒前
24秒前
24秒前
24秒前
24秒前
mm完成签到 ,获得积分10
24秒前
王王王发布了新的文献求助10
26秒前
SciGPT应助李响采纳,获得20
26秒前
饭团不吃鱼完成签到,获得积分10
26秒前
慕青应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
虎正凯完成签到 ,获得积分10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
斧王应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243732
求助须知:如何正确求助?哪些是违规求助? 4410020
关于积分的说明 13726872
捐赠科研通 4279637
什么是DOI,文献DOI怎么找? 2348225
邀请新用户注册赠送积分活动 1345435
关于科研通互助平台的介绍 1303665